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Abstract. The matrix 1-norm estimation algorithm used in LAPACK and various other software
libraries and packages has proved to be a valuable tool. However, it has the limitations that it offers
the user no control over the accuracy and reliability of the estimate and that it is based on level 2
BLAS operations. A block generalization of the 1-norm power method underlying the estimator is
derived here and developed into a practical algorithm applicable to both real and complex matrices.
The algorithm works with n × t matrices, where t is a parameter. For t = 1 the original algorithm
is recovered, but with two improvements (one for real matrices and one for complex matrices). The
accuracy and reliability of the estimates generally increase with t and the computational kernels are
level 3 BLAS operations for t > 1. The last t−1 columns of the starting matrix are randomly chosen,
giving the algorithm a statistical flavor. As a by-product of our investigations we identify a matrix
for which the 1-norm power method takes the maximum number of iterations. As an application of
the new estimator we show how it can be used to efficiently approximate 1-norm pseudospectra.
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1. Introduction. Research in matrix condition number estimation began in the
1970s with the problem of cheaply estimating the condition number κ(A) = ‖A‖‖A−1‖
and an approximate null vector of a square matrix A given some factorization of
it. The earliest algorithm is one of Gragg and Stewart [10]. It was improved by
Cline, Moler, Stewart, and Wilkinson [4], leading to the 1-norm condition estimation
algorithm used in LINPACK [8] and later included in Matlab (function rcond).

During the 1980s, attention was drawn to various componentwise condition num-
bers and it was recognized that most condition estimation problems can be reduced
to the estimation of ‖A‖ when matrix-vector products Ax and ATx can be cheaply
computed [2], [16, Sec. 14.1]. Hager [12] derived an algorithm for the 1-norm that is
a special case of the more general p-norm power method proposed by Boyd [3] and
later investigated by Tao [18]. Hager’s algorithm was modified by Higham [14] and
incorporated in LAPACK (routine xLACON) [1] and Matlab (function condest).

The LINPACK and LAPACK estimators both produce estimates that in practice
are almost always within a factor 10 and 3, respectively, of the quantities they are
estimating [13], [14], [15]. This has been entirely adequate for applications where only
an order of magnitude estimate is required, such as the evaluation of error bounds.
However, in some applications an estimate with one or more correct digits is required
(see, for example, the pseudospectra application described in section 4), and for these
the LINPACK and LAPACK estimators have the drawback that they offer the user
no way to control or improve the accuracy of the estimate. Here, “accuracy” refers to
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Table 1
Empirical probabilities that min{φ̃s/‖A‖1, ‖A‖1/φ̃s}≥α for one A of the form inv(randn (100))

and N(0, 1) vectors xj .

α s = 1 4 8 12 16 20
0.99 0.01 0.02 0.04 0.03 0.03 0.04
0.9 0.10 0.23 0.31 0.31 0.35 0.35
0.5 0.62 0.92 0.98 0.99 1.00 1.00
0.3 0.88 0.99 1.00 1.00 1.00 1.00
0.1 1.00 1.00 1.00 1.00 1.00 1.00

average case behavior. Also of interest for a norm estimator is its worst case behavior,
that is, its “reliability.”

Since estimating ‖A‖ cheaply appears inevitably to admit the possibility of arbi-
trarily poor estimates (although proving so is an open problem [6]), one might look
for an approach for which probabilistic statements can be made about the accuracy of
the estimate. The definition ‖A‖ = maxx�=0 ‖Ax‖/‖x‖ of a subordinate matrix norm
suggests the estimate

φs = max

{ ‖Axj‖
‖xj‖ : j = 1: s

}
≤ ‖A‖,(1.1)

where s is a parameter and the xj are independently chosen random vectors. In
the case of the 2-norm (‖x‖2 = (xTx)1/2) and an appropriate distribution of the xj ,
explicit bounds are available on the probability of such estimates being within a given
factor of ‖A‖ [7]. As is done in [11] for certain estimates of the Frobenius norm we can

scale our estimates φ̃s ← θsφs, where the constant θs is chosen so that the expected
value of φ̃s is ‖A‖ (note that φ̃s can therefore be greater or less than ‖A‖). For
the 1-norm (‖x‖1 =

∑
i |xi|), which is our interest here, we investigate this approach

empirically. For a fixed matrix A of the form, in Matlab notation, inv(randn(100)),
Table 1 shows the observed probabilities that min{ φ̃s/‖A‖1, ‖A‖1/φ̃s } ≥ α for various
α and s, based on 1000 separate evaluations of the φs with vectors xj from the normal
N(0, 1) distribution, and where θs is determined empirically so that the mean of the

φ̃s is ‖A‖1.
The table shows that even with s = n/5 = 20 samples only 35% of the estimates

were within a factor 0.9 of the true norm. The statistical sampling technique is
clearly too crude to be useful for obtaining estimates with correct digits. One way
to exploit the information contained in the vectors Axj is to regard them as first
iterates from the 1-norm power method with starting vectors xj and to continue
to iterate. These considerations motivate the block generalization of the 1-norm
power method that we present in this paper. Our block power method works with a
matrix with t columns instead of a vector. To give a feel for how our new estimator
compares with the sampling technique, we applied the estimator (Algorithm 2.4)
to 1000 random matrices of the form inv(randn(100)). The results are shown in
Table 2; the estimates for t = 1: 5 are obtained at approximately the same cost as the
estimates φ̃s for s = 4, 8, 12, 16, 20, respectively. The superiority of the new estimator
is clear.

In section 2 we derive the block 1-norm power method and develop it into a prac-
tical algorithm for both real and complex matrices. In section 3 we present numerical
experiments that give insight into the behavior of the algorithm. An application in-
volving complex matrices is given in section 4, where we describe how the algorithm
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Table 2
Empirical probabilities that est ≥ α‖A‖1, for est from Algorithm 2.4 and A of the form

inv(randn(100)).

α t = 1 2 3 4 5
0.99 0.86 0.93 0.98 0.98 0.99
0.9 0.94 0.98 1.00 1.00 1.00
0.5 1.00 1.00 1.00 1.00 1.00

can be used to approximate 1-norm pseudospectra. Conclusions are presented in
section 5.

Finally, we note that although our work is specific to the 1-norm, the ∞-norm
can be estimated by applying our algorithm to A∗, since ‖A‖∞ = ‖A∗‖1.

2. Block 1-norm power method. The 1-norm power method is a special case
of Boyd’s p-norm power method [3] and was derived independently by Hager [12]. For
a real matrix A we denote by sign(A) the matrix with (i, j) element 1 or −1 according
as aij ≥ 0 or aij < 0. The jth column of the identity matrix is denoted by ej .

Algorithm 2.1 (1-norm power method). Given A ∈ R
n×n this algorithm com-

putes γ and x such that γ ≤ ‖A‖1 and ‖Ax‖1 = γ‖x‖1.
x = ones(n, 1)/n
repeat

y = Ax
ξ = sign(y)
z = AT ξ
if ‖z‖∞ ≤ zTx

γ = ‖y‖1
quit

end
x = ej , where |zj | = ‖z‖∞ (smallest such j)

end
Algorithm 2.1 was modified by Higham [14, Alg. 4.1] (see also [15], [16, Alg. 14.4])

to improve its reliability and efficiency. The modifications that improve the reliability
are, first, to force at least two iterations and, second, to take as the final estimate the
maximum of that produced by the algorithm and

‖Ab‖1/‖b‖1, bi = (−1)i+1

(
1 +

i− 1

n− 1

)
, i = 1:n.(2.1)

The vector b is a heuristic choice intended to “pick out” any large elements of A in
those cases where such elements fail to be revealed during the course of the algorithm.
Efficiency is improved by terminating the algorithm after computing ξ if it is the same
as the previous ξ, since it can be shown that convergence would otherwise be declared
after the subsequent computation of z.

To obtain a more accurate and reliable estimate than that provided by Algo-
rithm 2.1 we could run the algorithm t times in succession on t different starting
vectors. This idea was suggested in [12], with each starting vector being the mean
of the unit vectors ej not already visited and with the algorithm being prohibited
from visiting unit vectors previously visited. Note that the estimates obtained this
way are nondecreasing in t. This approach has two weaknesses: it allows limited
communication of information between the t different iterations and the highest level
computational kernel remains matrix-vector multiplication. We therefore develop a
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block algorithm that works with an n × t matrix as a whole instead of t separate
n-vectors. The block approach offers the potential of better estimates, through pro-
viding more information on which to base decisions, and it allows the use of level
3 BLAS operations, thus promising greater efficiency. The following algorithm esti-
mates not just the 1-norm of A, but, as a by-product, the 1-norms of the t columns
of A having largest 1-norms.

Algorithm 2.2 (block 1-norm power method). Given A ∈ R
n×n and a positive

integer t, this algorithm computes vectors g and ind with gj = ‖A(:, indj)‖1 and
g1 ≥ · · · ≥ gt such that gj is a lower bound for the 1-norm of the column of A of jth
largest 1-norm.

Choose starting matrix X ∈ R
n×t with columns of unit 1-norm.

repeat
Y = AX
gj = ‖Y (: , j)‖1, j = 1: t
Sort g so that g1 ≥ · · · ≥ gt.
ind best = indj where g1 = ‖Y (: , j)‖1
S = sign(Y )
Z = ATS
hi = ‖Z(i, : )‖∞, indi = i, i = 1:n
if max(hi) ≤ Z(: , ind best)TX(: , ind best), quit, end
Sort h so that h1 ≥ · · · ≥ ht and reorder ind correspondingly.
X(: , j) = eindj

, j = 1: t
end

Like the basic 1-norm power method (t = 1) [14], Algorithm 2.2 has the attractive
property that it generates increasing sequences of estimates. Denote with a superscript
“(k)” quantities from the kth iteration of the loop in Algorithm 2.2 and let aj denote
the jth column of A.

Lemma 2.3. The sorted vectors g(k) and h(k) satisfy

g
(k)
1 ≤ h

(k)
1 ≤ g

(k+1)
1 , k ≥ 1(2.2)

and

g
(k)
j ≤ g

(k+1)
j , j = 1: t, k ≥ 2.(2.3)

Proof. First, we have

g
(k)
1 = max

1≤j≤t
‖y(k)

j ‖1 =: ‖y(k)
r ‖1.

But

‖y(k)
r ‖1 = s(k)

r

T
y(k)
r = s(k)

r

T
Ax(k)

r = z(k)
r

T
x(k)
r .

Thus

g
(k)
1 = z(k)

r

T
x(k)
r ≤ ‖z(k)

r ‖∞‖x(k)
r ‖1 = ‖z(k)

r ‖∞ ≤ max
i,j
|z(k)

ij | = h
(k)
1 .

Furthermore, if h
(k)
1 = ‖Z(k)(r, :)‖∞, then

h
(k)
1 = max

j
|aTr s(k)

j | ≤ ‖ar‖1 = ‖y(k+1)
1 ‖1 ≤ g

(k+1)
1 .
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To prove (2.3), assume without loss of generality that x
(k−1)
j = ej , j = 1: t. Then

Y (k) = [a1 . . . at] and Z(k) has the form

Z(k) =




‖a1‖1 α1 . . . α1

α2 ‖a2‖1 . . . α2

...
. . .

...
αt . . . αt ‖at‖1

αt+1 αt+1

...
...

αn . . . . . . αn



,

where each αi in row i is, in general, different, and αi ≤ ‖ai‖1, i = 1:n. The algorithm
chooses the ind values corresponding to the t rows of Z(k) with largest ∞-norm, and

the g
(k+1)
j on the next stage are at least as large as these ∞-norms. Since row j

of Z(k) has ∞-norm ‖aj‖1 for j = 1: t and {g(k)
j }tj=1 = {‖aj‖1}tj=1, inequality (2.3)

follows.

Algorithm 2.2 has three possible sources of inefficiency. First, the columns of S are
vectors of ±1s and so a pair of columns si and sj may be parallel (si = ±sj), in which
case zi = ±zj and in computing Z a matrix-vector multiplication is redundant. There
can be up to t−1 redundant matrix-vector products per iteration, this maximum being
achieved on the second iteration with S the matrix of ones when A has nonnegative
elements. The second possible inefficiency is that a column of S may be parallel to one
from the previous iteration, in which case the formation of Z = ATS again involves
redundant computation. We choose to detect parallel columns and replace them by
random vectors rand{−1, 1} not already in S or the previous S; here, rand{−1, 1}
denotes a vector with elements from the uniform distribution on the set {−1, 1}.
The detection is done by forming inner products between columns and looking for
elements of magnitude n. The total cost of these computations is O(nt2) flops, which
is negligible compared with the 2n2t flops required for each matrix product in the
algorithm, since t� n in practice.

Our strategy could be extended to check for parallel columns between the current
S and all previous S; we return to this possibility in section 3. If all the columns
of S are parallel to columns from the previous iteration, then it is easy to see that
Algorithm 2.2 is about to converge; we therefore immediately terminate the iteration
without computing Z.

Finally, on step k we can have x
(k)
j = es = x

(r)
i for some i and some r < k,

so that the computation of Ax
(k)
j then repeats an earlier computation. Repeated

vectors ej are easily avoided by keeping track of the indices of all the previously used
ej and selecting ind1, . . . , indt from among the indices not previously used. If all
the indices are repeats, then again we prematurely terminate the iteration, saving a
matrix product.

Note that the first and third inefficiencies are possible only for t > 1, while the
second can happen for the original 1-norm power method.

Our strategy of detecting redundant computations and replacing them by com-
putations that provide new information has three benefits. First, it can reduce
the amount of computation, through premature detection of convergence. Second,
it can lead to better estimates. For the columns of S this depends on the random
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replacement vectors generated, but for the ej the improvement is deterministic up
to future replacements of columns of S. The third benefit is that the dimensions of
the matrix multiplications remain constant at each iteration, as opposed to varying
if we simply skip redundant computations; this helps us to make efficient use of the
computing resources.

The next algorithm incorporates these modifications. The algorithm is forced to
take at least 2 (and at most itmax) iterations so that it computes at least t columns
of A; it also explicitly identifies the approximate maximizing vector that achieves the
norm estimate.

Algorithm 2.4 (practical block 1-norm estimator). Given A ∈ R
n×n and posi-

tive integers t and itmax ≥ 2, this algorithm computes a scalar est and vectors v and
w such that est ≤ ‖A‖1, w = Av, and ‖w‖1 = est‖v‖1.

Choose starting matrix X ∈ R
n×t with columns of unit 1-norm.

ind−hist = [ ] % Integer vector recording indices of used unit vectors ej .
estold = 0, ind = zeros(n, 1), S = zeros(n, t)
for k = 1, 2, . . .

Y = AX
est = max{ ‖Y (: , j)‖1 : j = 1: t }
if est > estold or k = 2

ind best = indj where est = ‖Y (: , j)‖1, w = Y (: , ind best)
end

(1) if k ≥ 2 and est ≤ estold, est = estold, goto (6), end
estold = est, Sold = S
if k > itmax, goto (6), end
S = sign(Y )

(2) If every column of S is parallel to a column of Sold, goto (6), end
if t > 1

Ensure that no column of S is parallel to another column of S
or to a column of Sold by replacing columns of S by rand{−1, 1}.

end
(3) Z = ATS

hi = ‖Z(i, : )‖∞, indi = i, i = 1:n
(4) if k ≥ 2 and max(hi) = hind best, goto (6), end

Sort h so that h1 ≥ · · · ≥ hn and re-order ind correspondingly.
if t > 1

(5) If ind(1: t) is contained in ind−hist, goto (6), end
Replace ind(1: t) by the first t indices in ind(1:n) that are
not in ind−hist.

end
X(: , j) = eindj , j = 1: t
ind−hist = [ind−hist ind(1: t)]

end
(6) v = eind best

Note that this algorithm does not explicitly compute lower bounds for the 1-norms
of all t largest columns of A. If this information is required (and we are not aware of
any applications in which it is needed), then it can be obtained by keeping track of

the largest ‖y(k)
j ‖1 values encountered.

Inequality (2.2), now expressed as est(k) ≤ h
(k)
1 ≤ est(k+1), is still valid, except

that h
(k)
1 > est(k+1) is possible on the last iteration if the original ind

(k)
1 is a repeat
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(this event is handled by the test (1)). However, (2.3) is no longer true, because of
the avoidance of repeated indices.

How do Algorithms 2.4 and 2.2 compare? Ignoring the itmax test, Algorithm 2.4
terminates in at most n/t+1 iterations, since t vertices ej are visited on each iteration
after the first and no vertex can be visited more than once. The same cannot be said
of Algorithm 2.2 because of the possibility of repeated vertices. Algorithm 2.4 can
produce a smaller estimate than Algorithm 2.2: when a redundant computation is
avoided, the new information computed can lead to an apparently more promising
vertex (based on the relative sizes of the hi) replacing one that actually corresponds
to a larger column of A. However, it is more likely, when Algorithm 2.4 and Algo-
rithm 2.2 produce different results, that Algorithm 2.4 produces a better estimate, as
in the following example.

Example 2.5. For a certain 10× 10 matrix A, with t = 2 and a random starting
matrix X1 we obtained the following results. For Algorithm 2.2,

1: (0, 8.10e-001) (0, 6.13e-001)

2: (10, 1.77e+000) (4, 1.76e+000)

Underestimation ratio: 1.99e-001

The first column denotes the iteration number. The kth row gives the sorted g
(k)
i ,

j = 1: t, each one preceded by the corresponding index indi. (Since X1 does not have
columns ej , the indi for the first iteration are shown as zero.) For Algorithm 2.4,

1: (0, 8.10e-001) (0, 6.13e-001)

2: (10, 1.77e+000) (4, 1.76e+000)

1 parallel column between S and S_old

3: (2, 8.87e+000) (5, 4.59e+000)

Exact estimate!

Algorithm 2.2 converges after two iterations and produces an estimate too small by
a factor 5. However, on the second iteration Algorithm 2.4 detects a column of S
parallel to one of Sold and replaces it. The new column produces a different Z matrix
and causes the convergence test (4) to be failed. The extra iteration visits the (unique)
column of maximum 1-norm, so an exact estimate is obtained.

When t = 1, Algorithm 2.4 differs from the modified version of Algorithm 2.1
used in LAPACK 3.0 [14, Alg. 4.1], [16, Alg. 14.4] in two ways. First, Algorithm 2.4
does not use the “extra estimate” (2.1). Second, the LAPACK algorithm checks for
ξ(k) = ξ(k−1) but not for ξ(k) = −ξ(k−1) as does Algorithm 2.4. This is an oversight.
We recommend that LAPACK’s xLACON be modified to include the extra test. This
change will not affect the estimates produced but will sometimes reduce the number
of iterations.

We now explain our choice of starting matrix. We take the first column of X to
be the vector of 1s, which is the starting vector used in Algorithm 2.1. This has the
advantage that for a matrix with nonnegative elements the algorithm converges with
an exact estimate on the second iteration, and such matrices arise in applications,
for example as a stochastic matrix or as the inverse of an M -matrix. The remaining
columns are chosen as rand{−1, 1}, with a check for and correction of parallel columns,
exactly as for S in the body of the algorithm. We choose random vectors because it
is difficult to argue for any particular fixed vectors and because randomness lessens
the importance of counterexamples (see the comments in the next section).

Next, we consider complex matrices, which arise in the pseudospectrum appli-
cation of section 4. Everything in this section remains valid for complex matrices
provided that sign(A) is redefined as the matrix (aij/|aij |) (and sign(0) = 1) and
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transposes are replaced by conjugate transposes. The matrix S is now complex with
elements of unit modulus and we are much less likely to find parallel columns of S
from one iteration to the next or within the current S. Therefore for complex matri-
ces we omit the tests for parallel columns. However, we take the same, real, starting
matrix. There is one further question in the complex case. In the analogue of Algo-
rithm 2.1 for complex matrices in [14, Alg. 5.1] z is defined as z = Re(A∗ξ), based
on subgradient considerations. In our block algorithm should we take Z = A∗S or
Z = Re(A∗S)? The former can be justified from heuristic considerations and preserves
more information about A. We return to this question in the next section.

The motivation for Algorithm 2.4 is to enable more accurate and reliable estimates
to be obtained than are provided by the 1-norm power method. The question arises
of how the accuracy and reliability of the estimates varies with t. Little can be
said theoretically because, unlike the approach of [12] mentioned at the start of this
section, the estimates are not monotonic in t. If we run Algorithm 2.4 for t1 and for
t2 > t1, using a common set of t1 starting vectors, we can obtain a smaller estimate
for t2 than for t1, because a less promising choice of unit vector ej can turn out to
be better than a more promising choice made with more available information. Non-
monotonicity is unlikely, however, and we argue that it is a price worth paying for
the other advantages that accrue. In the next section we investigate the behavior of
Algorithm 2.4 empirically.

3. Numerical experiments. Our aim in this section is to answer the following
questions about Algorithm 2.4, bearing in mind that for t = 1 the algorithm is an
implementation of the well-understood 1-norm power method.

1. How does the accuracy and reliability of the norm estimates vary with t?
2. How good are the norm estimates in general?
3. How does the number of iterations behave for t > 1?

Note that we are not searching for counterexamples, as was done for previous condition
estimators [4], [5], [14]. We know that for a fixed starting matrix and any t� n there
must be families of matrices whose norm is underestimated by an arbitrarily large
factor, since the algorithm samples the behavior of the n× n matrix A on fewer than
n vectors. But since the algorithm uses a random starting matrix for t > 1, each
counterexample will be valid only for particular starting matrices.

All our tests have been performed with Matlab.

Our first group of tests deals with random real matrices. Amongst the matrices
A we used were the following:

1. A from the normal N(0, 1) distribution (denoted randn) and its inverse, or-
thogonal QR factor, upper triangular part, and inverse of the upper triangular
part.

2. A from the uniform distribution on the set {−1, 0, 1} (denoted rand({-1,0,1})),
A−1 from the uniform distribution on the interval [0, 1].

3. A and A−1 of the form UΣV T where U and V are random orthogonal matri-
ces and Σ = diag(σi), with the singular values σi distributed exponentially,
arithmetically, or with all except the smallest equal to unity, and with 2-norm
condition number ranging from 1 to 1016.

Note that we omit, for example, matrices from the uniform [0, 1] and uniform {−1, 1}
distributions, because for such matrices Algorithm 2.4 is easily seen to produce the
exact norm for all t.
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We chose n and t in the range 25 ≤ n ≤ 250, 1 ≤ t ≤ 10.

For each test matrix we recorded a variety of statistics including the underestima-
tion ratio est/‖A‖1 ≤ 1, averaged and minimized over each type of A for fixed n and
t, the relative error |est− ‖A‖1|/‖A‖1, and the number of iterations. We declared an
estimate exact if the relative error was no larger than 10−14 (the unit roundoff is of
order 10−16). For a given matrix A we first generated a starting matrix X1 with tmax

columns, where tmax is the largest value of t to be used, and then ran Algorithm 2.4
for t = 1: tmax using starting matrix X1(:, 1: t). In this way we could see the effect of
increasing t. In particular, we checked what percentage of the estimates for a given t
were at least as large as the estimates for all smaller t; we denote this “improve%.”
We set itmax = 5 in Algorithm 2.4.

First, we give some general comments on the results.

1. Increasing t usually gave larger average and minimum underestimation ratios,
though there were exceptions. The quantity improve% was 100 about half
the time and never less than 78.

2. The number of iterations averaged between 2 and 3 throughout, with maxima
ranging from 2 to 5 depending on the type of matrix. Thus increasing t from
1 has little effect on the number of iterations—an important fact that could
not be predicted from the theory. Although there are specially constructed
examples for which the 1-norm power method requires many iterations (one
is described below), it is rare for the limit of 5 iterations to come into effect.

3. Throughout the tests we also computed the extra estimate (2.1) used by
the LAPACK norm estimator [14]. As expected, in none of our tests (with
random matrices) was the extra estimate larger than the estimate provided
by Algorithm 2.4 with t = 1.

In Tables 3 and 4 we show detailed results for two particular types of ran-
dom matrix from among those described above, with n = 100: inv(randn) and
rand({-1,0,1}). The columns headed “Products” show the average and maximum
total number of matrix products AX and ATS. In each case 5000 matrices were
used. For the matrices inv(randn) taking t = 2 significantly improves the worst-case
and average estimates and the proportion of exact estimates over t = 1, while for
t = 4 the estimate is exact almost 98% of the time. For the matrices rand({-1,0,1})
the improvements as t increases are less dramatic but still useful; notice that ex-
actly four matrix products were required in every case. As well as recording the
number of products, we checked how convergence was achieved. For the matrices
rand({-1,0,1}) convergence was always achieved at the test (4) in Algorithm 2.4,
while for inv(randn) convergence was declared at tests (4) and (2) in approximately
96% and 4% of the cases, respectively (with just a few instances of convergence at (5)
for t ≥ 2). The last two columns of Table 3 show the average and maximum number
of parallel columns of S that were detected. A small number of repeated ej vectors
were detected and replaced (the largest average was 0.03, occurring for t = 2, and the
maximum number of 7 occurred for t = 8). No parallel columns or repeated ej were
detected for the matrices in Table 4.

The strategy of replacing parallel columns of S and repeated ej vectors has little
effect on the overall performance of Algorithm 2.4 in our tests with random matrices.
Since particular examples can be found where it is beneficial (see Example 2.5) and
the cost is negligible, we feel its use is worthwhile. However, we see no advantage
to extending the strategy to compare the columns of S with those of all previous S
matrices.
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Table 3
Results for 5000 matrices inv(randn) of dimension 100.

Underest. ratio Products Parallel cols.
t min average % exact average max improve% average max
1 0.176 0.979 83.40 4.3 10 0.00 0
2 0.507 0.993 92.64 4.0 8 98.42 0.09 2
3 0.628 0.997 96.40 4.0 6 98.88 0.22 4
4 0.702 0.999 97.98 4.0 6 99.46 0.37 6
5 0.780 0.999 98.98 4.0 6 99.80 0.52 8
6 0.798 1.000 99.40 4.0 6 99.92 0.68 9
7 0.885 1.000 99.62 4.0 6 99.94 0.86 11
8 0.889 1.000 99.78 4.0 6 99.96 1.04 13
9 0.893 1.000 99.88 4.0 4 100.00 1.22 15
10 0.893 1.000 99.92 4.0 4 100.00 1.39 17

Table 4
Results for 5000 matrices rand({−1,0,1}) of dimension 100.

Underest. ratio Products
t min average % exact average max improve%
1 0.530 0.836 3.42 4 4
2 0.588 0.883 6.80 4 4 88.62
3 0.676 0.904 10.12 4 4 87.68
4 0.708 0.917 13.00 4 4 88.08
5 0.733 0.928 16.48 4 4 88.86
6 0.743 0.935 19.24 4 4 88.70
7 0.757 0.941 22.24 4 4 89.20
8 0.761 0.946 25.60 4 4 89.88
9 0.775 0.951 28.56 4 4 90.74
10 0.775 0.956 31.64 4 4 91.44

Higham [15] gives a tridiagonal matrix for which the 1-norm power method (Algo-
rithm 2.1) requires n iterations to converge. We have constructed a matrix for which
the maximum n+ 1 iterations is required. It is the inverse of a bidiagonal matrix:

An(α) = −




1 α
1 α

1
. . .
. . . α

1




−1

= −




1 −α α2 . . . (−α)n−1

1 −α ...

1
. . .

...
. . . −α

1



∈ R

n×n, 0 < α < 1.

(The minus sign in front of the matrix is necessary!) It is straightforward to show
that when Algorithm 2.1 is applied to An(α) it produces, for k = 1:n,

x(k) = ek, y(k+1) = Aek, ‖y(k+1)‖1 =
1− αk

1− α
,

ξ(k+1) = [ (−1)k (−1)k−1 . . . −1 1 . . . 1 ] , ‖z(k+1)‖∞ = |z(k+1)
k+1 |.
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Table 5
Results for matrix A100(1 − 10−6), with 1000 repetitions.

Underest. ratio Products
t min average % exact average max improve%
1 0.050 0.050 0.00 11.0 11∗
2 0.290 0.901 60.80 7.8 11∗ 100.00
3 0.510 0.975 84.90 6.5 11∗ 96.40
4 0.650 0.997 97.60 5.4 11∗ 99.60
5 0.840 0.999 99.30 4.9 11∗ 99.70
6 1.000 1.000 100.00 4.6 11∗ 100.00
7 1.000 1.000 100.00 4.3 11∗ 100.00
8 1.000 1.000 100.00 4.2 8 100.00
9 1.000 1.000 100.00 4.1 8 100.00
10 1.000 1.000 100.00 4.1 8 100.00

Thus every column of An(α) is computed, in order from first to last, and the exact
norm is obtained. If the algorithm is terminated after p iterations, then it produces
the estimate (1−αp−1)/(1−α), with underestimation ratio (1−αp−1)/(1−αn). For
t = 1, Algorithm 2.4 behaves in exactly the same way.

We applied Algorithm 2.4 1000 times to A100(1−10−6) (with itmax = 5, as in all
our tests). The results are shown in Table 5; in the sixth column, “11∗” denotes that
convergence was declared because the iteration limit was reached (the percentage of
such occurrences varied from 100% for t = 1 to 0.1% for t = 7). The underestimation
ratio for t = 1 agrees with the theory and is unacceptably small (note that there is
no randomness and hence only one estimate for t = 1). But for all t ≥ 2 the average
norm estimates are satisfactory. The extra estimate (2.1) has the value 0.561; thus it
significantly improves the estimate for t = 1 but is worse than the average estimates
for all greater t.

For complex matrices we have tried both Z = A∗S and Z = Re(A∗S) at (3) in
Algorithm 2.4. Tables 6 and 7 compare the two choices for 5000 100 × 100 random
complex matrices of the form inv(rand+i*rand), where rand is a matrix from the
uniform distribution on the interval [0, 1]. In this test, larger underestimation ratios
are obtained for Z = A∗S, the percentage of exact estimates is higher, and the
statistics on the number of matrix products are slightly better. In other tests we have
found the complex choice of Z always to perform at least as well, overall, as the real
choice (see, for example, the riffle shuffle example in section 4). We therefore keep Z
complex in Algorithm 2.4. In version 3.0 of LAPACK the norm estimator has been
modified from that in version 2.0 to keep Z (here a vector) complex.

Finally, how does Algorithm 2.4 compare with the suggestion of Hager mentioned
at the beginning of section 2 of running the 1-norm power method t times in suc-
cession? In tests with random matrices we have found Hager’s approach to produce
surprisingly good norm estimates, but they are generally inferior to those from Al-
gorithm 2.4. Since Hager’s approach is based entirely on level 2 BLAS operations,
Algorithm 2.4 is clearly preferred.

4. Computing 1-norm pseudospectra. In this section we apply the complex
version of Algorithm 2.4 to the computation of 1-norm pseudospectra. For ε ≥ 0 and
any subordinate matrix norm the ε-pseudospectrum of A ∈ C

n×n is defined by [22]

Λε(A) = { z ∈ C : z is an eigenvalue of A+ E for some E with‖E‖ ≤ ε },
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Table 6
Results for 5000 matrices inv(rand+i*rand) of dimension 100, with Z = A∗S.

Underest. ratio Products
t min average % exact average max improve%
1 0.456 0.980 76.04 4.2 8
2 0.688 0.994 89.92 4.0 8 98.46
3 0.746 0.997 95.30 4.0 6 99.14
4 0.763 0.999 97.46 4.0 6 99.34
5 0.763 0.999 98.68 4.0 6 99.62
6 0.859 1.000 99.18 4.0 6 99.82
7 0.859 1.000 99.50 4.0 4 99.88
8 0.859 1.000 99.70 4.0 4 99.96
9 0.859 1.000 99.86 4.0 4 100.00
10 0.954 1.000 99.90 4.0 4 100.00

Table 7
Results for 5000 matrices inv(rand+i*rand) of dimension 100, with Z = Re(A∗S).

Underest. ratio Products
t min average % exact average max improve%
1 0.403 0.908 36.82 4.2 8
2 0.503 0.955 56.94 4.1 8 93.98
3 0.633 0.975 71.24 4.0 8 94.92
4 0.641 0.986 81.10 4.0 6 96.22
5 0.641 0.992 87.52 4.0 6 97.48
6 0.690 0.995 92.36 4.0 6 98.54
7 0.781 0.997 95.00 4.0 6 99.20
8 0.801 0.998 96.70 4.0 6 99.44
9 0.819 0.999 98.12 4.0 6 99.74
10 0.822 0.999 98.68 4.0 6 99.84

or, equivalently, in terms of the resolvent (zI −A)−1, as

Λε(A) = { z ∈ C : ‖(zI −A)−1‖ ≥ ε−1 }.

Most published work on pseudospectra has dealt with the 2-norm, and the utility of
2-norm pseudospectra in revealing the effects of nonnormality is well appreciated [19],
[20], [22].

The 2-norm and any other p-norm of an n × n matrix differ by a factor at most√
n. For small n, pseudospectra therefore do not vary much between different p-norms.

However, Jónsson and Trefethen have shown [17] that in Markov chain applications
the choice of norm for pseudospectra can be crucial. In Markov chains representing
a random walk on an m-dimensional hypercube and a riffle shuffle of m cards, the
transition matrices are of dimension exponential in m and factorial in m, respectively.
It is known that when measured in an appropriate way, these random processes con-
verge to a steady state not gradually but suddenly after a certain number of steps.
As these processes involve powers of matrices of possibly huge dimension, and as the
1-norm is the natural norm for probability,1 1-norm pseudospectra are an important
tool for explaining the transient behavior [17].

One of the most useful graphical representations of pseudospectra is a plot of level
curves of the resolvent. We therefore consider the standard approach of evaluating
‖(zI −A)−1‖1 on an equally spaced grid of points z in some region of interest in the

1Because of the use of row vectors in the Markov chain literature, it is actually the ∞-norm that
is relevant. By using ‖A‖1 = ‖AT ‖∞ we can continue to work with the 1-norm.
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complex plane and sending the results to a contour plotter. A variety of methods for
carrying out these computations for the 2-norm are surveyed by Trefethen [21], but
most of the ideas employed are not directly applicable to the 1-norm.

Explicitly forming (zI − A)−1 at each grid point is computationally expensive.
A more efficient approach is to factorize P (zI − A) = LU at each point z by LU
factorization with partial pivoting and to use Algorithm 2.4 to estimate ‖(zI−A)−1‖1;
the matrix multiplications in the algorithm become triangular solves with multiple
right-hand sides. This approach can take advantage of sparsity in A. However, the
method still requires O(n3) operations per grid point when A is full.

We consider instead a more efficient approach that is applicable when we can
compute a Schur factorization [9, Chap. 7]

A = QTQ∗,(4.1)

where Q is unitary and T is upper triangular. Given this factorization we have

zI −A = Q(zI − T )Q∗,(4.2)

so that forming a matrix product with (zI −A)−1 or its conjugate transpose reduces
to solving a multiple right-hand side triangular system and multiplying by Q and
Q∗. Given this initial decomposition the cost per grid point of estimating the re-
solvent norm using Algorithm 2.4 is just O(n2t) flops—a substantial saving over the
first approach, and of the same order of magnitude as the cost of standard meth-
ods for computing 2-norm pseudospectra (provided t is small). In place of the Schur
decomposition we could use a Hessenberg decomposition, computed either by Gauss
transformations or Householder transformations [9, Sec. 7.4]; these decompositions
are less expensive, but the cost per grid point is a larger multiple of n2 flops because
of the need to factorize a Hessenberg matrix.

In more detail our approach is as follows.
Algorithm 4.1 (1-norm pseudospectra estimation). Given A ∈ C

n×n and a
positive integer t, this algorithm estimates ‖(zI −A)−1‖1 on a specified grid of points
in the complex plane, using Algorithm 2.4 with parameter t.

Compute the Schur factorization A = QTQ∗.
for each grid point z

Apply the complex version of Algorithm 2.4 to (zI −A)−1

with parameter t, using the representation (4.2).
end

Our experience is that Algorithm 4.1 frequently leads to visually acceptable con-
tour plots even for t = 1. As the following example shows, however, a larger value of
t may be needed. We take an example from Markov chains: the Gilbert–Shannon–
Reeds model of a riffle shuffle on a deck of n cards. The transition matrix P is of
dimension n!. Remarkably, as Jónsson and Trefethen explain [17], the dimension of
the matrix can be reduced to n by certain transformations that preserve the 1-norms
of powers and of the resolvent. For this experiment we took n = 52 and, as in [17], we
computed pseudospectra of the “decay matrix” A = P − limk→∞ P k, working with
the reduced form of A.

Figure 1 shows approximations to the 1-norm pseudospectra computed on a
100 × 100 grid, with t = 1, 2, 3 in Algorithm 2.4. Contours are plotted for ε =
10−1, 10−1.5, . . . , 10−4, the dashed line marks the unit circle, and the eigenvalues are
plotted as dots. We did not exploit the fact that, since A is real, the pseudospectra
are symmetric about the real axis. The contour plot for t = 1 is clearly incorrect in
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Fig. 1. 1-norm pseudospectra for the riffle shuffle. Clockwise from top left: t = 1 and Z =
Re(A∗S), t = 1, t = 2, t = 3.

the outer contour, while t = 2 yields an improvement and the plot for t = 3 is correct
to visual accuracy. Table 8 summarizes the key statistics from these computations,
showing that on average the norm estimates had about t correct significant digits for
t = 1, 2, 3. The figure and the table confirm that it is better to keep Z complex in
Algorithm 2.4.

We give a further example, in which A is a spectral discretization of an integral
operator of Landau [21, Sec. 21]; like the operator, A is complex and symmetric. We
took dimension n = 250 and Fresnel number 8. As noted in [21] for the 2-norm,
a fine grid is needed to resolve the details for this example; we used a 200 × 200
grid. Figure 2 shows the computed pseudospectra for t = 1, 4, 8, 16, and Table 9
summarizes the statistics for these values and for t = 2. Contours are plotted for
ε = 10−1, 10−1.5, . . . , 10−10, the dashed line marks the unit circle, and the eigenvalues
are plotted as dots. In Table 9, “11∗” denotes that convergence was declared because
the iteration limit was reached (the percentage of such occurrences was 0.12% for
t = 1 and 0.025% for t = 2). For t = 1 one of the contour lines misses an eigenvalue
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Fig. 2. 1-norm pseudospectra for the Landau matrix. Clockwise from top left: t = 1, t = 4,
t = 8, t = 16.

in the northwest corner of the plot. For t = 16 the plot differs from the exact one
only by some tiny oscillations in two outer contours. While Algorithm 2.4 performs
well even for small t, as measured by the underestimation ratio, quite accurate values
of the 1-norm of the resolvent are needed in this example in order to produce smooth
contours.

5. Conclusions. We have derived a new matrix 1-norm estimation algorithm,
Algorithm 2.4, with a number of key features. Most importantly, the algorithm has
a parameter t that can be used to control the accuracy and reliability of the esti-
mate (which is actually a lower bound). While there is no guarantee that increasing
t increases the estimate (leaving aside the fact that the starting matrix is partly ran-
dom), the estimate typically does increase with t, leading quickly to one or more
correct significant digits in the estimate. A crucial property of the algorithm is that
the number of iterations and matrix products required for convergence is essentially
independent of t (for random matrices about two iterations are required on average,
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Table 8
Results for riffle shuffle example. t = 1∗ denotes t = 1 with Z = Re(A∗S).

Underest. ratio Products
t min average % exact average max

1∗ 0.464 0.963 80.06 4.5 10
1 0.486 0.978 85.90 4.1 8
2 0.621 0.989 89.88 4.1 8
3 0.686 0.996 94.30 4.0 6

Table 9
Results for Landau matrix example.

Underest. ratio Products
t min average % exact average max
1 0.096 0.920 13.87 4.2 11∗
2 0.511 0.954 17.95 4.1 11∗
4 0.666 0.971 29.00 4.0 10
8 0.786 0.984 43.22 4.0 8
16 0.846 0.993 61.02 4.0 6

corresponding to four products of n × n and n × t matrices). The algorithm avoids
redundant computations and keeps constant the size of the matrix multiplications. In
future work we intend to investigate how the choice of t affects the efficiency of the
algorithm in a high-performance computing environment.

Unlike the statistically based norm estimation techniques in [7], [11] which cur-
rently apply only to real matrices, our algorithm handles both real and complex
matrices.

Since our algorithm uses a partly random starting matrix for t ≥ 2, it is natural
to ask whether bounds, valid for all A, can be obtained on the probability of the
estimate being within a certain factor of ‖A‖1. We feel that the very features of the
algorithm that make it so effective make it difficult or impossible to derive useful
bounds of this type.

For t = 1 our algorithm is very similar to the estimator in LAPACK, the differ-
ences being that our algorithm omits the extra estimate (2.1) and for real matrices
we test for parallel rather than simply repeated sign vectors (which improves the ef-
ficiency). Unlike in the estimator in LAPACK 2.0, for complex matrices we do not
take the real part of the z vector (which improves both the quality of the estimates
and the efficiency), and this change has been incorporated into LAPACK 3.0.

The new algorithm makes an attractive replacement for the existing LAPACK
estimator. The value t = 1 would be the natural default choice (with the extra
estimate (2.1) included for extra reliability and backward compatibility) and a user
willing to pay more for more accurate and reliable 1-norm estimates would have the
option of choosing a larger t.
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the riffle shuffle and Landau matrices used in section 4.
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