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Chapter 1

Introduction

The effects of rounding errors on algorithms in numerical linear algebra have
been much-studied for over fifty years, since the appearance of the first digital
computers. The subject continues to occupy researchers, for several reasons.
First, not everything is known about established algorithms. Second, new
algorithms are continually being derived, and their behaviour in finite preci-
sion arithmetic needs to be understood. Third, new error analysis techniques
lead to different ways of looking at and comparing algorithms, requiring a
reassessment of conventional wisdom.

The main purpose of these notes is to describe some up to date results
in rounding error analysis in a way accessible to non-experts. We have cho-
sen to analyse several practically important algorithms that are not thor-
oughly treated in numerical linear algebra textbooks. Chapter 3 considers
block LDLT factorization and Aasen’s method for symmetric indefinite sys-
tems, Chapter 4 QR factorization and the solution of constrained least squares
problems, and Chapter 5 Jacobi’s method for the singular value decomposi-
tion.

These notes can be regarded as a supplement to the book [32]. They
include mathematical problems and algorithms not treated therein.
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Chapter 2

Preliminaries

We make use of the standard model of floating point arithmetic:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /, (2.1)

where u is the unit roundoff. In applying the model, the following lemma is
frequently invoked.

Lemma 2.1 If |δi| ≤ u and ρi = ±1 for i = 1:n, and nu < 1, then

n∏
i=1

(1 + δi)
ρi = 1 + θn,

where

|θn| ≤
nu

1− nu
=: γn. (2.2)

Proof. See [32, Problem 3.1].

A useful property is [32, Lemma 3.3]

γj + γk + γjγk ≤ γj+k. (2.3)

The following lemma [32, Lemma 8.4] helps to simplify the analysis of elimi-
nation methods. As usual, a hat denotes a computed quantity.

Lemma 2.2 If y = (c −
∑k−1
i=1 aibi)/bk is evaluated in floating point arith-

metic, then, no matter what the order of evaluation,

bkŷ(1 + θ
(0)
k ) = c−

k−1∑
i=1

aibi(1 + θ
(i)
k ),

where |θ(i)k | ≤ γk for all i. If bk = 1, so that there is no division, then

|θ(i)k | ≤ γk−1 for all i.
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4 Preliminaries

All our error bounds will be expressed in terms of γn in (2.2) and the
related constant

γ̃k =
cku

1− cku
,

in which c denotes a small integer constant whose exact value is unimportant.
Thus we can write, for example, 3γ̃k = γ̃k, and mγ̃n = nγ̃m = γ̃mn.

Absolute values and inequalities are interpreted componentwise.
The following lemma is useful in the analysis of the application of House-

holder matrices.

Lemma 2.3 If Xj + ∆Xj ∈ Rn×n satisfies ‖∆Xj‖F ≤ δj‖Xj‖2 for all j,
then ∥∥∥∥ m∏

j=0

(Xj +∆Xj)−
m∏
j=0

Xj

∥∥∥∥
F

≤
( m∏
j=0

(1 + δj)− 1

) m∏
j=0

‖Xj‖2.

Proof. Assume the result is true for m− 1. Now

m∏
j=0

(Xj +∆Xj) = (Xm +∆Xm)

m−1∏
j=0

(Xj +∆Xj),

so, using ‖ABC‖F ≤ ‖A‖2‖B‖F ‖C‖2,∥∥∥∥ m∏
j=0

(Xj +∆Xj)−
m∏
j=0

Xj

∥∥∥∥
F

=

∥∥∥∥Xm

[m−1∏
j=0

(Xj +∆Xj)−
m−1∏
j=0

Xj

]

+∆Xm

m−1∏
j=0

(Xj +∆Xj)

∥∥∥∥
F

≤ ‖Xm‖2
(m−1∏
j=0

(1 + δj)− 1

)m−1∏
j=0

‖Xj‖2

+ δm‖Xm‖2
m−1∏
j=0

(
‖Xj‖2(1 + δj)

)
=

( m∏
j=0

(1 + δj)− 1

) m∏
j=0

‖Xj‖2.



Chapter 3

Symmetric Indefinite Systems

A symmetric matrix A ∈ Rn×n is indefinite if (xTAx)(yTAy) < 0 for some
x, y ∈ Rn, or, equivalently, if A has both positive and negative eigenvalues.
Linear systems with symmetric indefinite coefficient matrices arise in many
applications, including least squares problems, optimization and discretized
incompressible Navier–Stokes equations.

For solving dense symmetric indefinite linear systems Ax = b two types of
factorization are used. The first is the block LDLT factorization (or symmetric
indefinite factorization)

PAPT = LDLT , (3.1)

where P is a permutation matrix, L is unit lower triangular and D is block
diagonal with diagonal blocks of dimension 1 or 2. The second factorization
is that produced by Aasen’s method,

PAPT = LTLT ,

where P is a permutation matrix, L is unit lower triangular with first column
e1 and T is tridiagonal. Block LDLT factorization is much more widely used
than Aasen’s factorization, but since both factorizations are mathematically
interesting we describe them both.

3.1. Block LDLT Factorization

If the symmetric matrix A ∈ Rn×n is nonzero, we can find a permutation Π
and an integer s = 1 or 2 so that

ΠAΠT =

[ s n−s

s E CT

n−s C B

]
,

with E nonsingular. Having chosen such a Π we can factorize

ΠAΠT =

[
Is 0

CE−1 In−s

] [
E 0
0 B − CE−1CT

] [
Is E−1CT

0 In−s

]
. (3.2)
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6 Symmetric Indefinite Systems

This process is repeated recursively on the (n−s)× (n−s) Schur complement

Ã = B − CE−1CT ,

yielding the factorization (3.1) on completion. This factorization method is
sometimes called the diagonal pivoting method, and it costs n3/3 operations
(the same cost as Cholesky factorization of a positive definite matrix) plus
the cost of determining the permutations Π.

There are various ways to choose the permutations. Bunch and Parlett
[12] proposed a complete pivoting strategy that requires O(n3) comparisons.
Bunch and Kaufman [11] subsequently proposed a partial pivoting strategy
requiring only O(n2) comparisons, and it is this strategy that is used in LIN-
PACK [20] and LAPACK [2].

To define the Bunch–Kaufman (BK) pivoting strategy it suffices to de-
scribe the pivot choice for the first stage of the factorization.

Algorithm 3.1 (Bunch–Kaufman pivoting strategy) This algorithm de-
termines the pivot for the first stage of the symmetric indefinite factorization
applied to a symmetric matrix A ∈ Rn×n using the partial pivoting strategy
of Bunch and Kaufman.

α := (1 +
√

17)/8 (≈ 0.64)
γ1 := maximum magnitude of any subdiagonal entry in column 1.
If γ1 = 0 there is nothing to do on this stage of the factorization.
if |a11| ≥ αγ1

use a11 as a 1× 1 pivot (s = 1, Π = I).
else

r := row index of first (subdiagonal) entry of maximum
magnitude in column 1.

γr :=

∥∥∥∥[A(1 : r − 1, r)
A(r + 1 : n, r)

]∥∥∥∥
∞

if |a11|γr ≥ αγ21
(2) use a11 as a 1× 1 pivot (s = 1, Π = I).

else if |arr| ≥ αγr
use arr as a 1× 1 pivot (s = 1, Π swaps rows and
columns 1 and r).

else

use

[
aii ari
ari arr

]
as a 2× 2 pivot (s = 2, Π swaps

rows and columns 1 and i, and 2 and r).
end

end



3.1 Block LDLT Factorization 7

To understand the BK strategy it helps to consider the matrix

a11 . . . ar1(γ1) . . . . . . . . .
...

...
ar1(γ1) . . . arr . . . air(γr) . . .

...
...

... air(γr)

...
...


,

and to note that the pivot is one of a11, arr and
[
a11
ar1

ar1
arr

]
.

The BK pivoting strategy searches at most two columns of the Schur com-
plement at each stage of the factorization, so requires only O(n2) comparisons
in total.

The parameter α is derived by element growth considerations. It is not
hard to show (see [11] or [32, Section 10.4]) that for s = 1 the elements of the
Schur complement satisfy

|ãij | ≤
(

1 +
1

α

)
max
i,j
|aij |,

while for s = 2,

|ãij | ≤
(

1 +
2

1− α

)
max
i,j
|aij |.

Thus over two s = 1 steps the elements grow by a factor at most (1 + 1/α)2,
while for one s = 2 step the growth is by a factor at most 1 + 2/(1 − α).
Equating these growth bounds leads to the quadratic equation 4α2−α−1 = 0,
whose positive root is taken in Algorithm 3.1.

The numerical stability of the block LDLT factorization method is de-
scribed by the following result of Higham [34].

Theorem 3.2 Let block LDLT factorization with any pivoting strategy be ap-
plied to a symmetric matrix A ∈ Rn×n as described above to yield the computed
factorization PAPT ≈ L̂D̂L̂T , where P is a permutation matrix and D has
diagonal blocks of dimension 1 or 2. Let x̂ be the computed solution to Ax = b
obtained using the factorization. Assume that for all linear systems Ey = f
involving 2× 2 pivots E the computed solution x̂ satisfies

(E +∆E)ŷ = f, |∆E| ≤ (cu+O(u2))|E|, (3.3)

where c is a constant. Then

P (A+∆A1)PT = L̂D̂L̂T , (A+∆A2)x̂ = b,
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where

|∆Ai| ≤ p(n)u
(
|A|+ΠT |L̂||D̂||L̂T |Π

)
+O(u2), i = 1: 2,

with p a linear polynomial.

For the BK pivoting strategy the condition (3.3) can be shown to hold
for the two most natural ways of solving the 2 × 2 systems: Gaussian elim-
ination with partial pivoting (GEPP) and by use of the explicit inverse (as
is done in LINPACK and LAPACK). Thus Theorem 3.2 is applicable to the
BK pivoting strategy, and the question is whether it implies backward sta-
bility, that is, whether the matrix |L̂||D̂||L̂T | is suitably bounded relative to
A. If the elements of L were bounded by a constant then the inequality
‖ |L||D||LT | ‖∞ ≤ ‖L‖∞‖D‖∞‖LT ‖∞ would immediately yield a satisfactory
bound. However, for the BK pivoting strategy L is unbounded, as we now
show by example. For ε > 0, the BK pivoting strategy produces the factor-
ization, with P = I,

A =

 0 ε 0
ε 0 1
0 1 1

 =

 1
0 1

1/ε 0 1

 0 ε
ε 0

1

 1 0 1/ε
1 0

1

 = LDLT .

As ε→ 0, ‖L‖∞‖D‖∞‖LT ‖∞/‖A‖∞ →∞. Nevertheless, it can be shown in
general that the matrix |L||D||LT | satisfies the bound

‖ |L||D||LT | ‖M ≤ 36nρn‖A‖M ,

where ‖A‖M = maxi,j |aij | and

ρn =
maxi,j,k |a(k)ij |
maxi,j |aij |

,

where the a
(k)
ij are the elements of the Schur complements arising during the

factorization; see Higham [34]. The term ρn is a growth factor analogous to
that for GEPP; it is bounded by (1 + α−1)n−1 = (2.57)n−1, as can be seen
from the derivation of α above, but it is an open problem whether this bound
is attainable. The normwise stability can be described as follows.

Theorem 3.3 Let A ∈ Rn×n be symmetric and let x̂ be a computed solution
to the linear system Ax = b produced by block LDLT factorization the partial
pivoting strategy of Bunch and Kaufman, where linear systems involving 2×2
pivots are solved by GEPP or by use of the explicit inverse. Then

(A+∆A)x̂ = b, ‖∆A‖M ≤ p(n)ρnu‖A‖M +O(u2),

where p is a quadratic.
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For solving linear systems, Theorem 3.3 shows that block LDLT factoriza-
tion with the BK pivoting strategy has satisfactory backward stability. But
for certain other applications the possibly large L factor makes the factoriza-
tion unsuitable. An example is a modified Cholesky factorization algorithm of
Cheng and Higham [14] in which a block LDLT factorization of a symmetric
A is computed and then the D factor perturbed to make it positive definite;
for the perturbation of D to correspond to a perturbation of A of similar size
it is necessary that ‖L‖ is not too large. In [14] this problem was overcome
by using a new pivoting strategy of Ashcraft, Grimes and Lewis [4] which
does guarantee a bounded L in the block LDLT factorization. This “bounded
Bunch–Kaufman” pivoting strategy is broadly similar to the BK strategy, but
it has an iterative phase.

Algorithm 3.4 (bounded Bunch–Kaufman pivoting strategy) This al-
gorithm determines the pivot for the first stage of the symmetric indefinite
factorization applied to a symmetric matrix A ∈ Rn×n.

α := (1 +
√

17)/8 (≈ 0.64)
γ1 := maximum magnitude of any subdiagonal entry in column 1.
If γ1 = 0 there is nothing to do on this stage of the factorization.
if |a11| ≥ αγ1

use a11 as a 1× 1 pivot (s = 1, Π = I).
else

i := 1; γi := γ1
repeat

r := row index of first (subdiagonal) entry of maximum
magnitude in column i.

γr := maximum magnitude of any off-diagonal entry in
column r.

if |arr| ≥ αγr
use arr as a 1× 1 pivot (s = 1, Π swaps rows and
columns 1 and r).

else if γi = γr

use

[
aii ari
ari arr

]
as a 2× 2 pivot (s = 2, Π swaps

rows and columns 1 and i, and 2 and r).
else

i := r, γi := γr.
end

until a pivot is chosen
end

The repeat loop in Algorithm BBK searches for an element ari that is si-
multaneously the largest in magnitude in the rth row and the ith column, and
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it uses this element to build a 2× 2 pivot; the search terminates prematurely
if a suitable 1× 1 pivot is found. Note that the pivot choice in case (2) of the
BK strategy (Algorithm 3.1) can never arise with the BBK strategy.

Since the value of γi increases strictly from one pivot step to the next,
the search in Algorithm BBK takes at most n steps. The overall cost of the
searching is therefore between O(n2) and O(n3) comparisons. Matrices are
known for which the entire Schur complement must be searched at each step,
in which case the cost is O(n3) comparisons. However, probabilistic results
and experimental evidence suggest that usually only O(n2) comparisons are
required [4].

The following properties noted in [4] are readily verified, using the property
that any 2× 2 pivot satisfies∣∣∣∣∣

[
aii ari
ari arr

]−1∣∣∣∣∣ ≤ 1

γr(1− α2)

[
α 1
1 α

]
.

1. Every entry of L is bounded by max{1/(1− α), 1/α} ≈ 2.78.

2. Every 2× 2 pivot block Dii satisfies κ2(Dii) ≤ (1 + α)/(1− α) ≈ 4.56.

3. The growth factor for the factorization satisfies the same bound as for
the BK pivoting strategy.

At the cost of a worst case O(n3) searching overhead, the BBK pivoting
strategy thus gives an L factor with elements of order 1 and produces well
conditioned 2× 2 blocks of D.

The work of Ashcraft, Grimes and Lewis [4] was motivated by an opti-
mization problem in which solving symmetric linear systems using the BK
pivoting strategy led to convergence difficulties, which were traced to the fact
that ‖L‖ is unbounded. The theme of [4] is that pivoting strategies such as
the BBK strategy that bound ‖L‖ lead to higher accuracy. A class of linear
systems is given in [4] where the BBK pivoting strategy provides more accu-
rate solutions than the BK strategy. However, a theoretical comparison by
Cheng [13] of normwise and componentwise backward and forward stability
of the two strategies does not identify clear superiority of the BBK strategy.
Therefore with the available evidence it is not possible to conclude that the
BBK strategy has superior accuracy or stability to the BK strategy for solving
general symmetric indefinite linear systems.

3.2. Aasen’s Method

Aasen’s method [1] factorizes a symmetric matrix A ∈ Rn×n

PAPT = LTLT ,
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where L is unit lower triangular with first column e1,

T =


α1 β1
β1 α2 β2

. . .
. . .

. . .
. . .

. . . βn−1
βn−1 αn


is tridiagonal, and P is a permutation matrix.

To derive Aasen’s method, we initially ignore interchanges and assume
that the first i− 1 columns of T and the first i columns of L are known. We
show how to compute the ith column of T and the (i + 1)st column of L. A
key role is played by the matrix

H = TLT , (3.4)

which is easily seen to be upper Hessenberg. Equating ith columns in (3.4)
we obtain

h1i
h2i
...

hi−1,i
hii
hi+1,i

0
...
0


= T



li1
li2
...

li,i−1
1
0
...
0


=



α1li1 + β1li2
β1li1 + α2li2 + β2li3

...
βi−2li,i−2 + αi−1li,i−1 + βi−1

βi−1li,i−1 + αi
βi
0
...
0


. (3.5)

We use an underline to denote an unknown quantity to be determined.
The first i− 1 equations in (3.5) are used to compute h1i, . . . , hi−1,i. The

next two equations contain two unknowns each so cannot yet be used. The
(i, i) and (i+ 1, i) elements of the equation A = LH give

aii =

i−1∑
j=1

lijhji + hii, (3.6)

ai+1,i =

i∑
j=1

li+1,jhji + hi+1,i, (3.7)

which we solve for hii and hi+1,i. Now we can return to the last two nontrivial
equations of (3.5) to obtain αi and βi. Finally, the ith column of the equation
A = LH yields

aki =

i+1∑
j=1

lkjhji, k = i+ 2:n,
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which yields the elements below the diagonal in the (i+ 1)st column of L:

lk,i+1 =
aki −

∑i
j=1 lkjhji

hi+1,i
, k = i+ 2:n. (3.8)

The factorization has thereby been advanced by one step.
The operation count for Aasen’s method is the same as for block LDLT

factorization.
To ensure that the factorization does not break down, and to improve

its numerical stability, interchanges are incorporated. Before the evaluation
of (3.7) and (3.8) we compute vk = αki −

∑i
j=1 lkjhji, k = i + 1:n, find r

such that |vr| = max{ |vk| : k = i+ 1:n }, and then swap vk and vr and make
corresponding interchanges in A and L. This partial pivoting strategy ensures
that |lij | ≤ 1 for i > j.

3.2.1. Rounding Error Analysis

Aasen [1] states without proof a backward error bound for the factorization.
We give a detailed analysis of the factorization and the subsequent solution
of a linear system. We will ignore pivoting (or, equivalently, assume that A is
“pre-pivoted”).

The Factorization

We wish to bound the residual A− L̂T̂ L̂T of the computed factors L̂ and T̂ .
This can be done in two steps. First, note that applying Lemma 2.2 to (3.8),

and using the fact that l̂k1 = 0 for k = 2:n, we obtain

l̂k,i+1ĥi+1,i(1 + θ
(0)
i ) = aki −

i∑
j=2

l̂kj ĥji(1 + θ
(j)
i ), k = i+ 2:n,

where |θ(j)i | ≤ γi for all j. Similar equations are obtained from (3.6) and
(3.7). By collecting all these equations together for i = 1:n and expressing
the result in matrix form we find that

|A− L̂Ĥ| ≤ γn|L̂||Ĥ|. (3.9)

Similar analysis applied to (3.5) shows that

|Ĥ(:, i)− T̂ L̂T (:, i)| ≤ γ3|T̂ ||L̂T (:, i)|, i = 1:n,

so that

|Ĥ − T̂ L̂T | ≤ γ3|T̂ ||L̂T |. (3.10)
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Combining (3.9) and (3.10) we obtain

|A− L̂T̂ L̂T | = |A− L̂Ĥ + L̂(Ĥ − T̂ L̂T )|
≤ γn|L̂||Ĥ|+ γ3|L̂||T̂ ||L̂T |
≤ γn|L̂|(1 + γ3)|T̂ ||L̂T |+ γ3|L̂||T̂ ||L̂T |
= (γn + γnγ3 + γ3)|L̂||T̂ ||L̂T |
≤ γn+3|L̂||T̂ ||L̂T |,

using (2.3) for the last inequality. We summarize our bound in the following
theorem.

Theorem 3.5 If Aasen’s method applied to A ∈ Rn×n runs to completion
then the computed factors L̂ and T̂ satisfy

L̂T̂ L̂T = A+∆A, |∆A| ≤ γn+3|L̂||T̂ ||L̂T |.

Solution of a Linear System

To solve a linear system Ax = b using the factorization A = LTLT we solve
in turn

Lz = b, Ty = z, LTx = y. (3.11)

The system Ty = z has a symmetric tridiagonal coefficient matrix that is
indefinite in general. For stability reasons it is usually solved by LU factor-
ization with partial pivoting, which unfortunately destroys the symmetry and
so cannot be used to determine the inertia. A factorization PT = MU is ob-
tained, where M has at most one nonzero below the diagonal in each column
and U has upper bandwidth 2 (uij = 0 for j > i + 2). Straightforward error
analysis (cf. [32, Ch. 9]) shows that for the computed factors of the computed

T̂ we have
PT̂ = M̂Û +∆T, |∆T | ≤ γ2|M̂ ||Û |.

We solve the triangular systems Mw = Pz and Uy = w. The computed
solutions satisfy

(M̂ +∆M)ŵ = P ẑ, |∆M | ≤ γ1|M̂ |,
(Û +∆U)ŷ = ŵ, |∆U | ≤ γ3|Û |.

Hence
ẑ = PT (M̂ +∆M)(Û +∆U)ŷ = (T̂ +∆T1)ŷ,

where

|∆T1| = |PT (−∆T +∆MÛ + M̂∆U +∆M∆U)|
≤ (γ2 + γ1 + γ3 + γ1γ3)PT |M̂ ||Û |
≤ γ6PT |M̂ ||Û |,
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using (2.3). For the triangular solves involving L in (3.11) we have, using
Lemma 2.2,

(L̂+∆L1)ẑ = b, |∆L1| ≤ γn−1|L̂|,
(L̂T +∆LT2 )x̂ = ŷ, |∆L2| ≤ γn−1|L̂|.

Overall, then,

b = (L̂+∆L1)(T̂ +∆T1)(L̂T +∆LT2 )x̂ = (A+∆A1)x̂,

where, using Theorem 3.5,

|∆A1| = |∆A+∆L1(T̂ +∆T1)(L̂T +∆LT2 ) + L̂∆T1(L̂T +∆LT2 ) + L̂T̂∆LT2 |
≤ γn+3|L̂||T̂ ||L̂T |+ γn−1(1 + γn−1)|L̂|(|T̂ |+ γ6P

T |M̂ ||Û |)|L̂T |

+ γ6(1 + γn−1)|L̂|PT |M̂ ||Û ||L̂T |+ γn−1|L̂||T̂ ||L̂T |
≤ (γn+3 + 2γn−1 + γ2n−1)|L̂||T̂ ||L̂T |

+ γ6(1 + 2γn−1 + γ2n−1)|L̂|PT |M̂ ||Û ||L̂T |

≤ γ3n+1|L̂||T̂ ||L̂T |+ γ2n+4|L̂|PT |M̂ ||Û ||L̂T |,

using (2.3). We summarize the analysis in a theorem.

Theorem 3.6 Let A ∈ Rn×n be symmetric and suppose Aasen’s method pro-
duces computed factors L̂, T̂ and a computed solution x̂ to Ax = b. Then

(A+∆A)x̂ = b, |∆A| ≤ γ3n+1|L̂||T̂ ||L̂T |+ γ2n+4|L̂|PT |M̂ ||Û ||L̂T |,

where PT̂ ≈ M̂Û is the computed factorization produced by LU factorization
with partial pivoting. Moreover,

‖∆A‖∞ ≤ (n− 1)2γ15n+25‖T̂‖∞.

Proof. We just have to verify the bound for ‖∆A‖∞. Every element of L̂

and M̂ is bounded by 1, so, since the first column of L is e1, ‖L̂‖∞ ≤ n−1 and

‖M̂‖∞ ≤ 2. Careful consideration of LU factorization with partial pivoting

on a tridiagonal matrix shows that ‖Û‖∞ ≤ 3‖T̂‖∞ (we ignore the trivial
effects of rounding error on this bound). The bound follows readily.

3.2.2. The Growth Factor

Theorem 3.6 shows that Aasen’s method is a backward stable method for
solving Ax = b provided that the growth factor

ρn =
maxi,j |tij |
maxi,j |aij |
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is not too large. (Here, we are making the reasonable assumption that maxij |tij | ≈
maxij |t̂ij |.)

Using the fact that the multipliers in Aasen’s method are bounded by
1, it is straightforward to show that if maxi,j |aij | = 1 then T has a bound
illustrated for n = 5 by

|T | ≤


1 1
1 1 2

2 4 8
8 16 32

32 64

 .
Hence

ρn ≤ 4n−2.

Whether this bound is attainable for n ≥ 4 is an open question. Cheng [13]
reports experiments using direct search in which he obtained growth of 7.99 for
n = 4 and 14.61 for n = 5, which are to be compared with the corresponding
bounds of 16 and 64.

3.3. Aasen’s Method Versus Block LDLT Factorization

While block LDLT of a symmetric matrix using the BK pivoting strategy is
implemented in all the major program libraries, the only library we know to
contain Aasen’s method is the IMSL Fortran 90 library [28]. A comparison
of the two methods in the mid 1970s found little to choose between them in
speed [7], but no thorough comparison on modern computer architectures has
been published. See [4] for some further comments. The greater popularity
of block LDLT factorization may be due to the fact that it is generally easier
to work with a block diagonal matrix with blocks of size at most 2 than with
a tridiagonal one.

Note that since |lij | ≤ 1 for Aasen’s method with pivoting, the method
is superior to block LDLT factorization with the BK pivoting strategy for
applications in which a bounded L is required.

3.4. Tridiagonal Matrices

In the previous section we noted that solving a symmetric tridiagonal sys-
tem by LU factorization with partial pivoting does not take advantage of the
symmetry of A. On the other hand, any attempt to compute the symmetry-
preserving factorization PAPT = LDLT with a diagonal D can fail, since
the factorization does not always exist. Bunch [10] suggested a way to avoid
both difficulties: compute a block LDLT factorization without interchanges
(in the same way as in Section 3.1) with a particular strategy for choosing
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the pivot size (1 or 2) at each stage of the factorization. Bunch’s strategy [10]
for choosing the pivot size is fully defined by describing the choice of the first
pivot.

Algorithm 3.7 (Bunch’s pivoting strategy) This algorithm determines
the pivot size, s, for the first stage of block LDLT factorization applied to a
symmetric tridiagonal matrix A ∈ Rn×n.

σ := max{ |aij | : i, j = 1:n } (compute once, at the start of the
factorization)

α := (
√

5− 1)/2 ≈ 0.62
if σ|a11| ≥ αa221
s = 1

else
s = 2

end

The result is a factorization

A = LDLT , (3.12)

where L is unit lower triangular and D is block diagonal with each diagonal
block having dimension 1 or 2. The value of α is derived in a similar way as
for the Bunch–Kaufman pivoting strategy, by equating growth bounds. The
inertia of A is the same as that of D, which can be read from the (block)
diagonal of D, since any 2 × 2 block can be shown to have one negative and
one positive eigenvalue.

The following stability result is proved by Higham [33].

Theorem 3.8 Let block LDLT factorization with the pivoting strategy of Al-
gorithm 3.7 be applied to a symmetric tridiagonal matrix A ∈ Rn×n to yield
the computed factorization A ≈ L̂D̂L̂T , and let x̂ be the computed solution
to Ax = b obtained using the factorization. Assume that all linear systems
Ey = f involving 2× 2 pivots E are solved by GEPP or by use of the explicit
inverse. Then

A+∆A1 = L̂D̂L̂T , (A+∆A2)x̂ = b,

where
‖∆Ai‖M ≤ cu‖A‖M +O(u2), i = 1: 2, (3.13)

with c a constant.

Theorem 3.8 shows that block LDLT factorization with the pivoting strat-
egy of Algorithm 3.7 is a normwise backward stable way to factorize a sym-
metric tridiagonal matrix A and to solve a linear system Ax = b. Block LDLT

factorization therefore provides an attractive alternative to LU factorization
with partial pivoting for solving such linear systems.



Chapter 4

QR Factorization and Constrained

Least Squares Problems

The QR factorization is perhaps the most important factorization in numeri-
cal linear algebra. It plays a vital role in the solution of linear systems (well-,
under- and overdetermined), and in eigenvalue problems and singular value
problems. One recent textbook treats QR factorization before Gaussian elim-
ination [48].

In this section we investigate the accuracy and stability properties of QR
factorization and then describe some methods based on QR factorization for
solving the constrained least squares problem.

A QR factorization of A ∈ Rm×n with m ≥ n is a factorization

A = QR = [Q1 Q2 ]

[
R1

0

]
= Q1R1,

where Q ∈ Rm×m is orthogonal and R1 ∈ Rn×n is upper triangular. Whether
Q and R or the smaller Q1 and R1 are defined as the QR factors depends on
the application. A quick proof of existence of the QR factorization for full
rank A is obtained by taking R as the Cholesky factor of ATA and Q = AR−1.

We begin with an example to illustrate the versatility of QR factorization.

Any matrix A ∈ Rm×n with m ≥ n has a polar decomposition A = UH,
where U has orthonormal columns and H is symmetric positive semidefinite.
The polar decomposition has various applications [31] and can be computed
using the Newton iteration1

Xk+1 = 2Xk(I +XT
k Xk)−1, X0 = A, (4.1)

whose iterates converge to U quadratically. By adapting an idea from [51],

1For square matrices, iteration (4.1) is related to the iteration Yk+1 = (Yk + Y −T
k )/2,

Y0 = A, by Yk = X−T
k . Iteration (4.1) is the more expensive but has the advantage that it

applies to rectangular matrices.

17
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we can use QR factorization to avoid the explicit matrix inverse. Let

B =

[ n
n I
m A

]
=

[ n

n Q1

m Q2

]
R = QR

be a QR factorization. Then I = Q1R and A = Q2R. Since Q1 and R are
square, Q1 = R−1, and so

Q2Q
T
1 = AR−1R−T = A(RTR)−1 = A(I +ATA)−1.

Thus 2Q2Q
T
1 = X1, where X1 is the first Newton iterate from (4.1). It follows

that we can implement the Newton iteration in inverse-free form as follows:
with X0 = A, for k = 1, 2, . . .

[ n

n I
m Xk

]
=

[ n

n Q
(k)
1

m Q
(k)
2

]
Rk (QR factorization),

Xk+1 = 2Q
(k)
2 Q

(k)
1

T
.

Inverse-free iterations are potentially attractive for stability reasons [5].

4.1. Householder QR Factorization

A QR factorization can be computed in three main ways. The Gram–Schmidt
process, which sequentially orthogonalizes the columns of A, is the oldest
method and is described in most linear algebra textbooks. Givens transfor-
mations are preferred when A has a special sparsity structure, such as band
or Hessenberg structure. Householder transformations provide the most gen-
erally useful way to compute the QR factorization and are the subject of the
rest of this section.

A Householder matrix (Householder transformation) is a symmetric, or-
thogonal matrix of the form

P = I − 2

vT v
vvT , 0 6= v ∈ Rm.

Its key property, which is easily verified, is that if ‖x‖2 = ‖y‖2 but x 6= y,
then Px = y where v = x − y. We typically choose P to transform x into a
vector y = σe1 with σ = ± ‖x‖2. Most textbooks recommend choosing the
sign to avoid cancellation in the computation of v1 = x1 − σ:

sign(σ) = − sign(x1). (4.2)
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This has led to the myth that the other choice of sign is unsuitable. In fact,
the other sign is perfectly satisfactory provided that the formula for v1 is
suitably rearranged [43], [44, Section 6.3.1]:

v1 = x1 − sign(x1)‖x‖2 =
x21 − ‖x‖22

x1 + sign(x1)‖x‖2
=
−(x22 + · · ·+ x2m)

x1 + sign(x1)‖x‖2
. (4.3)

The computation of a QR factorization by Householder transformations
can be described as follows.

Algorithm 4.1 Given A ∈ Rm×n with m ≥ n this algorithm computes the
QR factorization A = QR where Q ∈ Rm×m is orthogonal and R ∈ Rm×n is
upper trapezoidal.

A1 = A
for k = 1: min(m− 1, n)

% Ak =

[
Rk−1 zk Bk

0 xk Ck

]
, Rk−1 ∈ R(k−1)×(k−1), xk ∈ Rm−k+1.

Construct a Householder matrix P̃k ∈ R(m−k+1)×(m−k+1)

such that P̃kxk = σe1 and define Pk =

[
Ik−1 0

0 P̃k

]
∈ Rm×m.

Let Ak+1 = PkAk
end
R = Amin(m,n+1)

Cost: 2n2(m− n/3) flops.
Of course, the Householder matrix is never formed in practice; storage and

computations use solely the Householder vector v.
By taking σ nonnegative and switching between the formulae v1 = x1 − σ

and (4.3) according as x1 is nonpositive and positive, respectively, we can
obtain from Algorithm 4.1 an R factor with nonnegative diagonal elements;
this is done in [25, Algs. 5.1, 5.2.1], for example. However, this approach is
not recommended for badly row scaled matrices, for reasons explained after
Theorem 4.6 below.

Now we consider the numerical stability of Householder QR factorization.
As is often the case in rounding error analysis, the analysis can be made quite
short and instructive if approached in the right way. The following lemma is
the key to the analysis. For notational convenience we now write Householder
matrices in the form

P = I − vvT , vT v = 2.

Lemma 4.2 Let a Householder matrix P = I − vvT ∈ Rm×m such that
Px = σe1 be constructed with either choice of sign of σ, as described above.



20 QR Factorization and Constrained Least Squares Problems

The computed v̂ can be written

v̂ = v +∆v, |∆v| ≤ γ̃m|v|. (4.4)

Proof. The proof consists of straightforward algebra using the model
(2.1). See [32, Lemma 18.1].

For the subsequent analysis we will introduce extra generality by consid-
ering v and v̂ satisfying (4.4) without requiring that Pv = σe1.

Lemma 4.3 Let b ∈ Rm and consider the computation of y = P̂ b = (I −
v̂v̂T )b = b− v̂(v̂T b), where v̂ ∈ Rm satisfies (4.4). The computed ŷ satisfies

ŷ = (P +∆P )b, ‖∆P‖F ≤ γ̃m,

where P = I − vvT .

Proof. Again, the proof is straightforward using the model (2.1). See [32,
Lemma 18.2].

In practice we invariably apply a sequence of Householder transformations
PrPr−1 . . . P1A and the question is how the errors from each step combine.
Since the Pj are applied to the columns of A, columnwise error bounds are to
be expected, and these are provided by the next lemma.

We will assume that

rγ̃m <
1

2
, (4.5)

where r is the number of Householder transformations. We will write the jth
column of A variously as A(:, j) and aj .

Lemma 4.4 Consider the sequence of transformations

Ak+1 = PkAk, k = 1: r,

where A1 = A ∈ Rm×n and Pk = I − vkvTk ∈ Rm×m is a Householder matrix.
Assume that the transformations are performed using computed Householder
vectors v̂k ≈ vk that satisfy (4.4). The computed matrix Âr+1 satisfies

Âr+1 = QT (A+∆A), (4.6)

where QT = PrPr−1 . . . P1 and

‖∆A(:, j)‖2 ≤ rγ̃m‖A(:, j)‖2.
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Proof. The jth column of A undergoes the transformations a
(r+1)
j =

Pr . . . P1aj . By Lemma 4.3 we have

â
(r+1)
j = (Pr +∆Pr) . . . (P1 +∆P1)aj , (4.7)

where each ∆Pk depends on j and satisfies ‖∆Pk‖F ≤ γ̃m. Using Lemma 2.3
we obtain

â
(r+1)
j = QT (aj + dj),

‖dj‖2 ≤
(
(1 + γ̃m)r − 1

)
‖aj‖2 ≤

rγ̃m
1− r γ̃m

‖aj‖2 = rγ̃′m‖aj‖2, (4.8)

using Lemma 2.1 and assumption (4.5).

Lemma 4.4 yields almost immediately the standard backward error result
for Householder QR factorization.

Theorem 4.5 Let R̂ ∈ Rm×n be the computed upper trapezoidal QR factor of
A ∈ Rm×n (m ≥ n) obtained via the Householder QR algorithm. Then there
exists an orthogonal Q ∈ Rm×m such that

A+∆A = QR̂,

where
‖∆A(:, j)‖2 ≤ γ̃mn‖A(:, j)‖2. (4.9)

The matrix Q is given explicitly as Q = (PnPn−1 . . . P1)T , where Pk is the
Householder matrix that corresponds to the exact application of the kth step
of the algorithm to Âk.

We note that for Householder QR factorization ∆Pk = 0 for k > j in (4.7),
and consequently the factor γ̃mn in (4.9) can be reduced to γ̃mj .

Theorem 4.5 is often stated in the weaker form ‖∆A‖F ≤ γ̃mn‖A‖F that
is implied by (4.9) (see, e.g., [25, Section 5.2.1]). For a matrix whose columns
vary widely in norm this normwise bound on ∆A is much weaker than (4.9).
For an alternative way to express this backward error result define B by
A = BDC , where DC = diag(‖A(:, j)‖2); then the result states that there
exists an orthogonal Q ∈ Rm×m such that

(B +∆B)DC = QR̂, ‖∆B(:, j)‖2 ≤ γ̃mn, (4.10)

so that ‖∆B‖2/‖B‖2 = O(u).
It is natural to ask whether a small row-wise backward error bound holds

for Householder QR factorization, since matrices A for which the rows vary
widely in norm occur commonly in weighted least square problems, for ex-
ample (see (4.17) below). In general, the answer is no. However, if column
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pivoting is used together with row pivoting or row sorting, and the choice
of sign (4.2) is used, then such a bound does hold. Recall that the column
pivoting strategy exchanges columns at the start of the kth stage of the fac-
torization to ensure that

‖a(k)k (k:m)‖2 = max
j≥k
‖a(k)j (k:m)‖2. (4.11)

In other words, it maximizes the norm of the active part of the pivot column.
With row pivoting, after the column interchange has taken place at the start
of the kth stage we interchange rows to ensure that

|a(k)kk | = max
i≥k
|a(k)ik |,

where Ak = (a
(k)
ij ). The alternative strategy of row sorting reorders the rows

prior to carrying out the factorization so that

‖A(i, :)‖∞ = max
j≥i
‖A(j, :)‖∞, i = 1:m.

Theorem 4.6 Let R̂ ∈ Rm×n be the computed upper trapezoidal QR factor
of A ∈ Rm×n (m ≥ n) obtained via the Householder QR algorithm with
column pivoting, with the choice of sign (4.2). Then there exists an orthogonal
Q ∈ Rm×m such that

(A+∆A)Π = QR̂,

where Π is a permutation matrix that describes the overall effect of the column
interchanges and

|∆aij | ≤ j2γ̃mαi max
s
|ais|,

where

αi =
maxj,k |â(k)ij |
maxj |aij |

.

The matrix Q is defined as in Theorem 4.5.

Theorem 4.6 was originally proved under some additional assumptions by
Powell and Reid [45]. The result as stated is proved by Cox and Higham [17];
it also follows from a more general result of Higham [35] that sheds more light
on why the theorem holds. In general, the row-wise growth factors αi can be
arbitrarily large. If row sorting or row pivoting is used it can be shown that
αi ≤

√
m(1 +

√
2)n−1 for all i [17], [45], with αi usually small in practice.

Therefore the αi are somewhat analogous to the growth factor for Gaussian
elimination with partial pivoting. For the alternative choice of sign (4.3) in
the Householder vectors, the αi are unbounded even if row pivoting or row
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sorting is used and so row-wise stability is lost; see [17] for an illustrative
example.

Note that the matrix Q in Theorem 4.5 is not computed by the QR factor-
ization algorithm and is of purely theoretical interest. It is the fact that Q is
exactly orthonormal that makes the result so useful. In most applications of
QR factorization (such as solving the least squares problem) it is unnecessary
to form the Q factor explicitly. When Q is explicitly formed, two questions
arise:

1. How close is the computed Q̂ to being orthonormal?

2. How large is A− Q̂R̂?

Both questions are easily answered using the analysis above.
First, note that there are two ways to form Q = (PnPn−1 . . . P1)T =

P1P2 . . . Pn: from left to right or from right to left. The right to left evalua-
tion is the more efficient, because the effective dimension of the intermediate
products grows from m − n to m, whereas with the left to right order it is
m at each stage. The right to left evaluation requires 4(m2n −mn2 + n3/3)
flops. Lemma 4.4 gives (with A1 = I)

Q̂ = Q(Im +∆I), ‖∆I‖F ≤
√
nγ̃mn.

The factor
√
n is unnecessary, as we can show using a variation of Lemma 4.4.

We can write (4.7) with r = n as

â
(n+1)
j = (Pn +∆Pn) . . . (P1 +∆P1)aj

≡ (Pn . . . P1 +∆IPn . . . P1)aj

= (Im +∆I)QTaj ,

where, by Lemma 2.3,

‖∆I‖F ≤ (1 + γ̃m)n − 1 = nγ̃′m.

With A1 = I we deduce that

Q̂ = (Im +∆I)QT , ‖∆I‖F ≤ γ̃mn.

Hence ‖Q̂ − Q‖F = ‖∆IQT ‖F ≤ γ̃mn, showing that Q̂ is very close to an
orthonormal matrix. Moreover, using Theorem 4.5

‖(A− Q̂R̂)(:, j)‖F = ‖(A−QR̂)(:, j) + ((Q− Q̂)R̂))(:, j)‖F
≤ γ̃mn‖A(:, j)‖2 + ‖Q− Q̂‖F ‖R̂(:, j)‖2
≤ γ̃′mn‖A(:, j)‖2.

Thus Theorem 4.5 remains true with Q replaced by Q̂.
One of the main uses of QR factorization is to solve the least squares

problem minx ‖b − Ax‖2. Analogues of Theorems 4.5 and 4.6 hold for the
computed LS solution [32, Theorem 19.3], [17].
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4.2. The Constrained Least Squares Problem

We now consider the least squares problem with equality constraints

LSE : min
Bx=d

‖b−Ax‖2, (4.12)

where A ∈ Rm×n and B ∈ Rp×n, with m+p ≥ n ≥ p. Note that the condition
m ≥ n− p ensures that the LSE problem is overdetermined. We will assume
that

rank(B) = p, null(A) ∩ null(B) = {0}. (4.13)

The assumption that B is of full rank ensures that the system Bx = d is con-
sistent and hence that the LSE problem has a solution. The second condition
in (4.13), which is equivalent to the condition that the matrix [AT , BT ]T has
full rank n, then guarantees that there is a unique solution [8, Section 5.1].

The LSE problem arises in various applications, including the analysis of
large-scale structures [6] and the solution of the inequality constrained least
squares problem [38, Chap. 23].

There are two main classes of methods for solving the LSE problem: null
space methods and elimination methods, with more than one variation of
method within each class. A basic difference between the classes is that one
QR factorizes the constraint matrix B while the other QR factorizes BT .

We first describe the null space methods, so-called because they employ an
orthogonal basis for the null space of the constraint matrix. We begin with
a version based on the generalized QR factorization. The generalized QR
factorization was introduced by Hammarling [27] and Paige [42] and further
analyzed by Anderson, Bai and Dongarra [3] and is of interest in its own right.

Theorem 4.7 (generalized QR factorization) Let A ∈ Rm×n and B ∈
Rp×n with m + p ≥ n ≥ p. There are orthogonal matrices Q ∈ Rn×n and
U ∈ Rm×m such that

UTAQ =

[ p n−p

m−n+p L11 0
n−p L21 L22

]
, BQ =

[ p n−p

p S 0
]
, (4.14)

where L22 and S are lower triangular. More precisely, we have

UTAQ =


[ n

m−n 0
n L

]
if m ≥ n,

[ n−m m

m X L
]

if m < n,

(4.15)

where L is lower triangular. The assumptions (4.13) are equivalent to S and
L22 being nonsingular.
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Proof. Let

QTBT =

[
ST

0

]
be a QR factorization of BT . We can determine an orthogonal U so that
UT (AQ) has the form (4.15), where L is lower triangular (for example, we
can construct U as a product of suitably chosen Householder transformations).
Clearly, B has full rank if and only if S is nonsingular. Partition Q = [Q1 Q2]
conformably with [S 0] and assume S is nonsingular. Then, clearly, null(B) =
range(Q2). We can write

A [Q1 Q2 ] = [U1 U2 ]

[
L11 0
L21 L22

]
,

so that AQ2 = U2L22. It follows that null(A)∩null(B) = {0} is equivalent to
L22 being nonsingular.

While (4.15) is needed to define the generalized QR factorization precisely,
the partitioning of UTAQ in (4.14) enables us to explain the application to
the LSE problem without treating the cases m ≥ n and m < n separately.

Using (4.14) the constraint Bx = d may be written

Sy1 = [S 0 ]

[
y1
y2

]
= d, y = QTx.

Hence the constraint determines y1 ∈ Rp as the solution of the triangular
system Sy1 = d and leaves y2 ∈ Rn−p arbitrary. Since

‖b−Ax‖2 = ‖c− UTAQy‖2, c = UT b,

we see that we have to find

min
y2

∥∥∥∥[ c1c2
]
−
[
L11 0
L21 L22

] [
y1
y2

]∥∥∥∥
2

= min
y2

∥∥∥∥[ c1 − L11y1
(c2 − L21y1)− L22y2

]∥∥∥∥
2

.

Therefore y2 is the solution to the triangular system L22y2 = (c2 − L21y1).
The solution x is recovered from x = Qy. We refer to this solution process
as the GQR method. It is the method used by the LAPACK driver routine
xgglse.f [2].

The stability of the GQR method is summarized by the following re-
sult [15].

Theorem 4.8 Suppose the LSE problem (4.12) is solved using the GQR method,
where the generalized QR factorization is computed using Householder trans-
formations and let the assumptions (4.13) be satisfied. Let x̂ denote the com-
puted solution.
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1. x̂ = x+∆x, where x solves min{‖b+∆b−(A+∆A)x‖2 : (B+∆B)x =
d}, with

‖∆x‖2 ≤ γ̃np‖x‖2, ‖∆b‖2 ≤ γ̃mn‖b‖2,
‖∆A‖F ≤ γ̃mn‖A‖F , ‖∆B‖F ≤ γ̃np‖B‖F .

2. x̂ solves min{‖b+∆b− (A+∆A)x‖2 : (B +∆B)x = d+∆d}, where

‖∆b‖2 ≤ γ̃mn‖b‖2 + γ̃np‖A‖F ‖x̂‖2, ‖∆A‖F ≤ γ̃mn‖A‖F ,
‖∆B‖F ≤ γ̃np‖B‖F , ‖∆d‖2 ≤ γ̃np‖B‖F ‖x̂‖2,

The first part of the theorem says that x̂ is very close to the exact solution
of a slightly different LSE problem; this is a mixed form of stability. The
second part says that x̂ exactly solves a perturbed LSE problem in which the
perturbations to A and B are tiny but those to b and d can be relatively large
when x is large-normed. It is an open problem whether genuine backward
stability holds. For the unconstrained least squares problem Gu [26] proves
that mixed stability implies backward stability and it would be interesting to
know whether this result can be extended to the LSE problem. In any case,
the stability of the GQR method can be regarded as quite satisfactory.

The GQR method can be modified to reduce the amount of computation
and the modified versions have the same stability properties [15].

The second main way of solving the LSE problem is by elimination. First,
we use QR factorization with column pivoting to factorize

BΠ = Q [R1 R2 ] , R1 ∈ Rp×p upper triangular, nonsingular. (4.16)

Note that column pivoting is essential here in order to obtain a nonsingular
R1. Then, partitioning ΠTx = [x̃T1 , x̃

T
2 ]T , x̃1 ∈ Rp and substituting the

factorization (4.16) into the constraints yields

R1x̃1 = QT d−R2x̃2.

By solving for x̃1 and partitioning AΠ = [Ã1, Ã2], Ã1 ∈ Rm×p we reduce the
LSE problem to the unconstrained problem

min
x̃2

‖(Ã2 − Ã1R
−1
1 R2)x̃2 − (b− Ã1R

−1
1 QT d)‖2.

Solving this unconstrained problem by QR factorization completes the elimi-
nation method as originally presented by Björck and Golub [9] (see also [38,
Chapter 21]). It is instructive to think of the method in terms of transforma-
tions on the matrix “B-over-A”:

[
B
A

]
=

[ p n−p

p B1 B2

m A1 A2

]
→
[
R1 R2

Ã1 Ã2

]
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→
[
R1 R2

0 Ã2 − Ã1R
−1
1 R2

]
→

R1 R2

0 R3

0 0

 ,
where R3 ∈ R(n−p)×(n−p) is upper triangular. Note that the penultimate
transformation is simply the annihilation of Ã1 by Gaussian elimination. The
B-over-A matrix also arises in the method of weighting for solving the LSE
problem, which is based on the observation that the LSE solution is the limit
of the solution of the unconstrained problem

min
x

∥∥∥∥[µdb
]
−
[
µB
A

]
x

∥∥∥∥
2

(4.17)

as the weight µ tends to infinity.
A row-wise backward error result is available for the elimination method

[16]. The computed solution exactly solves a perturbed LSE problem for which
row-wise backward error bounds hold that involve row-wise growth factors; if
row sorting or row pivoting is used (separately on A and B) then the growth
factors have similar behaviour to the αi in Theorem 4.6.



Chapter 5

The Singular Value Decomposition and

Jacobi’s Method

Jacobi used as a computing system his student Ludwig Seidel,

apparently operating in eight-digit decimal arithmetic!

— J. C. NASH, Compact Numerical Methods for Computers (1990)

One of the oldest methods for solving the symmetric eigenvalue problem
and computing the singular value decomposition (SVD) is Jacobi’s method.
The method’s publication date of 1846 predates the development of matrix
theory (the term “matrix” was first used in 1850 by Sylvester). Although the
QR algorithm has always been favoured because of its lower operation count,
Jacobi’s method has attracted renewed interest since the 1980s because of
its suitability for parallel implementation and its high accuracy properties.
We describe Jacobi’s method for the SVD, concentrating on its accuracy and
stability.

The perturbation theory and error analysis in this chapter is based on
that in the book of Demmel [18] and gives a relatively accessible explanation
of the accuracy properties of Jacobi methods. The research literature should
be consulted for further details, of which there are many. The best starting
points are Demmel and Veselić [19] and Mathias [39].

Recall that the SVD of A ∈ Rm×n, where m ≥ n, has the form

A = UΣV T , Σ = diag(σi) ∈ Rm×n, σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0,

where U ∈ Rm×m and V ∈ Rn×n are orthogonal. The σi are the singular
values and the columns of U and V contain the left and right singular vectors,
respectively. Jacobi’s method computes the reduced-size SVD in which U ∈
Rm×n has orthonormal columns and Σ ∈ Rn×n. We will use this form of
the SVD throughout the chapter. The last m− n columns of U are arbitrary
subject to completing an orthogonal matrix.

28
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5.1. Jacobi’s Method

First, consider the following orthogonal similarity transformation of a sym-
metric 2× 2 matrix:[

h′jj h′kj
h′kj h′kk

]
= JTCJ =

[
c −s
s c

]T [
hjj hkj
hkj hkk

] [
c −s
s c

]
, (5.1a)

c = cos θ, s = sin θ. (5.1b)

We wish to choose c and s to make h′kj zero. If hkj = 0 then we can set c = 1,
s = 0. Otherwise, multiplying out we find that

h′kj = sc(hkk − hjj) + hkj(c
2 − s2),

and so h′kj = 0 if t = tan θ satisfies

t2 + 2τt− 1 = 0, τ =
hjj − hkk

2hkj
.

We take the smaller of the two roots which can be expressed as

t =
sign(τ)

|τ |+
√

1 + τ2

(where sign(0) = 1), and then obtain c and s from

c =
1√

1 + t2
, s = tc. (5.2)

The corresponding rotation angle θ satisfies |θ| ≤ π/4; choosing a small rota-
tion angle is essential for the convergence theory [44, Chapter 9].

The transformation (5.1) with (5.2) is the basis of Jacobi’s method for
computing the eigensystem of a symmetric H ∈ Rn×n. For a sequence of
pairs (j, k) the transformation is applied in the (j, k) plane to the matrix H
to eliminate the (j, k) and (k, j) elements. Thus effectively we are applying
orthogonal similarity transformations to H with matrices of the form

J(j, k, θ) =



j k

1
...

...
. . .

...
...

j . . . . . . c s
. . .

k . . . . . . −s c
. . .

1


,
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which are called Jacobi matrices or Jacobi rotations (they are identical to
Givens rotations). A rotation will, in general, destroy zeros introduced by an
earlier rotation, but the hope is that the norm of the off-diagonal will converge
to zero, leaving the eigenvalues on the diagonal.

Returning to the SVD, recall that the singular values of A are the square
roots of the eigenvalues of ATA. Therefore we can compute the singular
values of A by applying Jacobi’s method to ATA. It is undesirable to form
ATA explicitly, because of the potential loss of information when A is ill
conditioned. It is preferable to apply Jacobi’s method implicitly, at each stage
postmultiplying A by the Jacobi transformation defined by Jacobi’s method
for the symmetric eigenproblem applied to ATA. This idea is encapsulated in
the one-sided Jacobi algorithm (from the right), which was first proposed by
Hestenes [30].

Algorithm 5.1 (one-sided Jacobi) This algorithm computes the SVD of
A = UΣV T ∈ Rm×n, m ≥ n, by the one-sided Jacobi algorithm.

done rot = true; V = I
while done rot = true

done rot = false
for j = 1:n− 1

for k = j + 1:n
hjj = A(: , j)TA(: , j)
hkj = A(: , j)TA(: , k)
hkk = A(: , k)TA(: , k)
if |hkj | > u

√
hjjhkk

done rot = true
τ = (hjj − hkk)/(2hkj)

t = sign(τ)/(|τ |+
√

1 + τ2)

c = 1/
√

1 + t2, s = ct

A(: , [j k]) = A(: , [j k])

[
c −s
s c

]
V (: , [j k]) = V (: , [j k])

[
c −s
s c

]
end

end
end

end
Sort the columns of A in decreasing order of 2-norm
and interchange the columns of V in the same way.
for j = 1:n

σj = ‖A(: , j)‖2
U(: , j) = A(: , j)/σj
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end

Denoting the matrix on a particular step of Algorithm 5.1 by A, the 2× 2
principal submatrix of ATA whose off-diagonal element is to be zeroed is
formed explicitly in order to determine the Jacobi rotation. However, the
rotation is applied to A (on the right) and not ATA (from both sides), which
leads to excellent stability properties, as we will see.

The criterion |hkj | > u
√
hjjhkk for deciding when to carry out a rotation

can be expressed as

u <
|A(:, j)TA(:, k)|
‖A(:, j)‖2‖A(:, k)‖2

= cos(θjk),

where θjk is the angle between A(:, j) and A(:, k). A rotation is therefore
carried out whenever the jth and kth columns are not already orthogonal
to working precision. Further justification for this criterion is given in Sec-
tion 5.2.

The convergence test for Algorithm 5.1 is to stop when a sweep has
been completed without carrying out any rotations, where a sweep denotes
that all the elements in the upper triangle of ATA have been eliminated
in turn. Note that an alternative (and expensive) convergence test is to
stop when off(ATA)/‖A‖2F is less than some modest multiple of u, where
off(B) = (

∑
i 6=j b

2
ij)

1/2. However, with this weaker criterion the computed
matrices of singular vectors may not be numerically orthogonal. A numerical
example illustrates this point. With A the floating point approximation H̃10

to the 10 × 10 Hilbert matrix we applied Algorithm 5.1 as stated and then
again using the stopping criterion off(ATA)/‖A‖2F < u. The computations
were done in Matlab, with u = 2−53 ≈ 1.1×10−16. The results are shown in
Table 5.1. (As the exact singular values of H̃10 we took the values computed
in 50 digit arithmetic by Matlab’s Symbolic Math Toolbox [40]). Notice that
the off stopping criterion results in fewer iterations but provides less accurate
computed singular values and a U completely lacking orthogonality. A bizarre
stopping criterion for Jacobi’s method for the symmetric eigenproblem is used
in [46], based on testing whether off(A) underflows to zero. Proper choice of
stopping criterion is vital if a reliable Jacobi code is to be produced.

Convergence of the algorithm corresponds to ATA being diagonal, which
means that the columns of A are orthonormal with 2-norms equal to the
singular values. The left singular vectors that make up the columns of U are
then obtained by scaling the columns by these singular values. Algorithm 5.1
does converge, as proved by Forsythe and Henrici [24], and the asymptotic
rate of convergence is quadratic; see [29], [44, Chapter 9] for details.

The overall cost of applying Algorithm 5.1 can be reduced by computing
a QR factorization of A or AT and then applying the algorithm to the square
upper triangular factor.
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Table 5.1: Effect of stopping criterion in Algorithm 5.1.

Original stopping criterion off stopping criterion
Number of sweeps 9 5

maxi |σi − σ̂i|/σi 4.7e-5 6.6e0
‖UTU − I‖2 5.2e-16 9.9e-1
‖V TV − I‖2 3.0e-15 2.9e-15

Finally, we note that the code in Algorithm 5.1 is very compact by com-
parison with that for methods based on reduction to bidiagonal form. The
ease of coding of Jacobi methods was an advantage on computers that had
little memory [41], but is less of an issue nowadays. Indeed there are many
subtleties in the implementation of Jacobi methods—even how to construct
and apply a single rotation in an accurate and robust fashion is a nontrivial
question [22].

5.2. Relative Perturbation Theory

In order to explain the accuracy properties of the one-sided Jacobi algorithm
we need a new style of perturbation theory known as relative perturbation
theory. Whereas traditional perturbation theory for eigenvalues and singular
values provides absolute error bounds that are the same for each eigenvalue or
singular value, relative perturbation theory provides relative error bounds that
are the same for each eigenvalue or singular value (these bounds are therefore
stronger than what is obtained by direct conversion of the absolute bounds).
We will treat the perturbations in multiplicative rather than additive form,
in order to match the error analysis of the next section. For a survey of
relative perturbation theory and additive versus multiplicative representation
of perturbations see Ipsen [36].

The result that we need for singular values is obtained via eigenvalue
perturbation theory, so we first consider eigenvalues. We denote the ith largest
eigenvalue of a symmetric matrix A ∈ Rn×n by λi(A), so that the eigenvalues
are ordered λn ≤ λn−1 ≤ · · · ≤ λ1. Similarly, σi(B) denotes the ith largest
singular value of B.

We need two standard results. The first is an immediate consequence of
the Courant–Fischer characterization of eigenvalues [47, p. 201] and is also a
special case of Weyl’s inequality [47, p. 203].

Lemma 5.2 If A ∈ Rn×n and E ∈ Rn×n are symmetric then |λi(A + E) −
λi(A)| ≤ ‖E‖2.
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The next two results are from Eisenstat and Ipsen [23, Theorems 2.1, 3.3].

Theorem 5.3 Let the symmetric matrices A and Ã = XTAX have eigenval-
ues λi and λ̃i, respectively, and assume X is nonsingular. Then

|λi − λ̃i| ≤ |λi|ε,

where ε = ‖XTX − I‖2.

Proof. Sylvester’s inertia theorem tells us that the matrices A − λiI
and XT (A − λiI)X have the same number of negative, zero and positive
eigenvalues. Since the ith eigenvalue of A−λiI is zero, so is the ith eigenvalue
of

XT (A− λiI)X = (XTAX − λiI) + λi(I −XTX) ≡ C + E.

From Lemma 5.2 it follows that |λi(C) − 0| ≤ ‖E‖2, which gives the result
since ‖E‖2 ≤ |λi|‖XTX − I‖2.

Our desired singular value result now follows as a corollary.

Corollary 5.4 Let B ∈ Rm×n and B̃ = Y TBX have singular values σi and
σ̃i, respectively, where Y ∈ Rm×m and X ∈ Rn×n, and assume X and Y have
full rank. Then

|σi − σ̃i| ≤ |σi|ε,

where ε = max(‖XTX − I‖2, ‖Y TY − I‖2).

Proof. Since X and Y have full rank, B and B̃ have the same number
of zero singular values. Recall that the nonzero singular values of B are plus
and minus the nonzero eigenvalues of

A =

[
0 B
BT 0

]
.

Similarly, for B̃ we can write

Ã =

[
0 Y TBX

XTBTY 0

]
= diag(Y,X)T

[
0 B
BT 0

]
diag(Y,X).

Applying Theorem 5.3 to A and Ã yields the result.

Corollary 5.4 makes precise the intuitive notion that a transformation
B → Y TBX will have little effect on the singular values only if X and Y are
nearly unitary.

With the aid of Theorem 5.3 we can justify the convergence test in Al-
gorithm 5.1. Consider H = ATA and assume without loss of generality
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that the diagonal elements of H are sorted in decreasing order. Suppose

|hkj | ≤ ε
√
hjjhkk for all k and j. Let D = diag(h

1/2
jj ) and define ∆ by

δij =


0, i = j,
hij√
hiihjj

, i 6= j,

so that H = D(I + ∆)D. Write I + ∆ = X2, where X is the symmetric
positive definite square root. Then

H = DX2D = (XD)−1XD2X(XD).

Thus H is similar to XD2X, and so by Theorem 5.3

|λi(H)− hii| ≤ ‖XTX − I‖2λi(H) = ‖∆‖2λi(H).

But λi(H) = σ2
i (A) and ‖∆‖2 ≤ (n− 1)ε, so

|σi(A)− h1/2ii | ≤ (n− 1)ε
σ2
i (A)

σi(A) + h
1/2
ii

≤ (n− 1)εσi(A).

Hence the singular values of A agree with the square roots of the (sorted) diag-
onal elements of H to high relative accuracy and so Algorithm 5.1 terminates
the iteration when the desired accuracy has been obtained.

5.3. Error Analysis

For the error analysis of the one-sided Jacobi algorithm we will assume that
A is square, which will be the case if a preliminary QR factorization has been
used.

Standard error analysis for SVD algorithms based on orthogonal transfor-
mations says that the computed singular values σ̂i of A ∈ Rm×n are the exact
ones of A+∆A, where ‖∆A‖2 ≤ p(m,n)u‖A‖2 for some polynomial p. This
yields the forward error bound for the singular values, from an analogue for
singular values of Lemma 5.2,

|σi − σ̂i| ≤ p(m,n)uσ1.

Hence the large singular values are guaranteed to be computed to high accu-
racy but the small ones (if there are any) are not. Algorithm 5.1 can provide
better relative accuracy—a fact that has only come to be widely appreciated
in the 1990s. The following result from [18, Theorem 5.15], [21, Theorem 6.1]
provides a relative error bound of the same size for each singular value.
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Theorem 5.5 Let A ∈ Rn×n be nonsingular and write A = DX, where D is
diagonal. Let Â be the matrix obtained from Algorithm 5.1 after applying p
Jacobi rotations. Then the singular values σi of A and σ̂i of Â satisfy

|σi − σ̂i|
σi

≤ κ2(X)
√
nγ̃p. (5.3)

Proof. It is straightforward to show that the construction and application
of a single Jacobi rotation, y = Jx, results in a computed ŷ for which ŷ =
(J+∆J)x, with ‖∆J‖F ≤ γ̃1, where J is exactly orthogonal (the proof is very
similar to that for application of a Givens rotation in QR factorization [32,
Lemma 18.7]). In Algorithm 5.1 we apply p Jacobi rotations from the right

and so the final matrix Â satisfies

Â(i, :) = A(i, :)(J1 +∆J1) . . . (Jp +∆Jp), ‖∆Ji‖F ≤ γ̃1.

From Lemma 2.3 it follows that

Â(i, :) = A(i, :)Q+∆A(i, :),

where Q = J1 . . . Jp and

‖∆A(i, :)‖2 ≤
(
(1 + γ̃1)p − 1

)
‖A(i, :)‖2 = γ̃p‖A(i, :)‖2.

Hence ‖D−1∆A‖2 ≤
√
nγ̃p‖X‖2. Thus

Â = AQ+∆A = AQ(I +QTA−1∆A) = AQ(I +QTX−1D−1∆A)

≡ AQ(I + E),

where
‖E‖2 ≤ κ2(X)

√
nγ̃p. (5.4)

Applying Corollary 5.4 we deduce that, with σ̂i = σi(Â),

|σi − σ̂i|
σi

≤ ‖(I + E)T (I + E)− I‖2 = ‖E + ET + ETE‖2 ≤ 3‖E‖2

≤ κ2(X)
√
nγ̃p,

where we have assumed that ‖E‖2 < 1.

Theorem 5.5 shows that Jacobi transformations from the right introduce
only small relative errors in the singular values in floating point arithmetic
provided that X is well conditioned. It is natural to ask what is the minimum
value of κ2(X) over all nonsingular diagonal D. A result of van der Sluis [49]
shows that

κ2(DRA) ≤
√
nmin

D
κ2(DA),
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Table 5.2: Relative errors in computed singular values.

Relative Error
True singular value Algorithm 5.1 Matlab’s SVD

1.9e+00 2.3e-16 1.2e-16
1.4e-01 1.9e-16 3.8e-16
1.0e-02 6.6e-16 0.0e+00
9.2e-04 2.3e-16 1.1e-15
8.5e-05 8.0e-16 6.4e-16
7.0e-06 1.2e-16 2.4e-16
7.0e-07 1.5e-16 2.0e-13
6.6e-08 2.0e-16 5.3e-12
1.6e-09 3.8e-15 1.2e-08
2.1e-10 3.4e-15 1.2e-07

where DR = diag(‖A(i, :)‖2)−1. Therefore X = DRA, which has rows of unit
2-norm, gives approximately the best bound (5.3).

Error bounds can also be obtained for the singular vectors. They show
that the absolute error in the singular vectors is bounded by a multiple of
the reciprocal of the relative gap between the singular values; see [19] for
details. For standard SVD methods it is the reciprocal of the absolute gap
that appears in the bounds, and the absolute gap can be much smaller than
the relative gap for small clustered singular values.

We give a numerical example to illustrate Theorem 5.5. We chose A =
DX ∈ R10×10, where D = diag(10−10, 10−9, . . . , 1) and X is a random matrix
from the normal (0,1) distribution, with κ2(X) = 1.4× 102. Table 5.2 shows
the relative errors in the singular values of A computed by Algorithm 5.1 and
by Matlab’s SVD routine, which implements the Golub–Reinsch algorithm
(bidiagonalization followed by the implicit QR algorithm). As Theorem 5.5
predicts, the one-sided Jacobi algorithm provides high relative accuracy in all
the singular values, but Matlab’s SVD loses up to half the digits in the small
singular values.

The representation A = DX in Theorem 5.5 factors out the row scaling
of A. It is natural to as whether a similar result holds if we factor out the
column scaling: A = XD. The answer is yes, and in fact this is the result
originally proved by Demmel and Veselić [19, Corollary 4.2]. Mathias [39]
calls the case where the orthogonal transformations are applied on the same
side as the scaling the “harder case” and explains the differences with the
“easy case” that we have considered here. Repeating the numerical example
above with A defined as A = XD rather than A = DX, we found that the
relative errors were very similar to those in Table 5.2.
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5.4. Other Issues

Several variations of the Jacobi method are possible. For the SVD we can
apply one-sided Jacobi from the left, thereby acting on the rows (which is not
recommended in Fortran, since arrays are stored columnwise). We can apply
two-sided Jacobi transformations, in which in each 2×2 subproblem a pair of
rotations is applied from the left and the right to diagonalize the submatrix;
this is known as the Kogbetliantz algorithm [8, Section 2.6.6], [37].

The one-sided Jacobi algorithm can also be used to compute the eigensys-
tem of a symmetric positive definite matrix A [19], [39], [50]. The idea is to
compute a Cholesky factorization A = RTR and then apply Algorithm 5.1 to
RT . The SVDRT = UΣV T yields the eigendecomposition A = UΣ2UT . This
approach has high accuracy, as we now show using error analysis for Cholesky
factorization. The computed Cholesky factor R̂ satisfies [32, Theorem 10.5]

A+∆A = R̂T R̂, |∆A| ≤ γ̃nddT ,

where di = a
1/2
ii . Define Y = R̂−TRT , so that

RRT = Y T R̂R̂TY. (5.5)

Now

Y TY = RR̂−1R̂−TRT = R(A+∆A)−1RT

≈ R(A−1 −A−1∆AA−1)RT

= I −R−T∆AR−1 (5.6)

and, with D = diag(di) and e = [1, 1, . . . , 1]T ,

‖R−T∆AR−1‖2 = ‖R−1D ·D−1∆AD−1 ·DR−1‖2
≤ ‖DR−1‖22‖D−1∆AD−1‖2
≤ ‖DR−1‖22 γ̃n ‖eeT ‖2
= nγ̃n‖DR−1‖22.

Now RTR = A =: DCD, where cii ≡ 1, which gives DR−1 · R−TD = C−1

and hence ‖DR−1‖22 = ‖C−1‖2. Therefore

‖R−T∆AR−1‖2 ≤ nγ̃nκ2(C), (5.7)

since 1 ≤ ‖C‖2 ≤ n. From (5.5)–(5.7) and Theorem 5.3 we deduce that (to

first order) the eigenvalues of RRT and R̂R̂T differ by a relative amount at
most nγ̃nκ2(C). If we write RT = DXT , then XTX = C, so κ2(C) = κ2(X)2.

Thus the eigenvalues of A and the squared singular values of R̂ differ by at
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most O(κ2(X)2u). From Theorem 5.5 we know that the Jacobi algorithm
applied to RT introduces errors of order κ2(X)u and we see that these are no
larger and possibly much smaller than the errors introduced by the Cholesky
factorization.

Finally, we note that although Jacobi methods have typically been slower
than the QR algorithm for the symmetric eigenproblem, a sophisticated im-
plementation using recent “preconditioning” techniques can compete with and
sometimes beat the QR algorithm for speed (Drmač, private communication).
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