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Abstract
How can we test the correctness of a computer implementation of an algorithm such as
Gaussian elimination, or the QR algorithm for the eigenproblem? This is an important
question for program libraries such as LAPACK, that are designed to run on a wide
range of systems. We discuss testing based on verifying known backward or forward error
properties of the algorithms, with particular reference to the test software in LAPACK.
Issues considered include the choice of bound to verify, computation of the backward error,
and choice of test matrices. Some examples of bugs in widely used linear algebra software
are described.
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1 INTRODUCTION

How can we test the correctness of a computer implementation of an algorithm in numer-
ical linear algebra? This is an important question for the authors of library software such
as LAPACK. A closely related, but different, question is how to measure empirically the
stability of an algorithm, independently of any particular implementation in a high-level
language. In the former case, which is our interest here, the stability properties of the
algorithm are assumed to be at least partly understood, through error analysis; in the
latter case, the aim is to supplement or replace a formal error analysis by suitable numer-
ical experiments, and it is assumed that the implementation of the algorithm used in the
experiments is correct. In practice, the two questions merge together, because very little
numerical software can be guaranteed to be bug-free.

To give a precise definition of “correctness” it would be necessary first to define precisely
how an algorithm is represented. An algorithm could, for example, be represented as a
pseudocode description to be translated into a target language such as C, Fortran, or
Matlab. Suppose the pseudocode contains the line

y = Ax (A ∈ IRn×n, x ∈ IRn).
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SRC 353,393
TESTING 308,770

TIMING 104,790
Total 766,953

Table 1 Lines of code in main subdirectories of LAPACK 3.0 distribution.

There are many different ways in which the assignment yi =
∑n

j=1 aijxj can be evaluated,
corresponding to different orderings of the sum; these ways are mathematically equivalent
but will, in general, give different answers in finite precision arithmetic. If the pseudocode
was, instead,

C = AB (A,B ∈ IRn×n)

then there is more ambiguity than simply the orderings of sums, because fast matrix
multiplication schemes, which use algebraically different formulae from the usual definition
of matrix multiplication, could be used. As these observations suggest, a precise definition
of the correctness of an implementation of an algorithm is not easy to formulate, and we
will not attempt to provide such a definition here.

The magnitude of the task of thoroughly testing linear algebra software is illustrated by
a statistic and a quote. Table 1 shows that 40 percent of the source code in the LAPACK
3.0 distribution∗ is concerned with testing. Dongarra & Stewart (1984, p. 43), two of the
LINPACK authors, comment that

In the development of LINPACK, considerable time and effort were spent in designing and
implementing a test package. In some cases, the test programs were harder to design than
the programs they tested.

A general approach to testing numerical codes is to define an easily computable func-
tion that gives an a posteriori measure of the success of a computation, and to evaluate
the function on a selection of problems. The function value is compared with a tolerance
that corresponds to some notion of stability. Our main interest here is in testing imple-
mentations of well understood algorithms for standard linear algebra computations such
as solving linear equation, least squares and eigenproblems. Here the function and toler-
ance can be chosen to reflect the known stability or accuracy properties of the algorithm.
There are two useful ways to apply this approach. One is to evaluate the function on a
battery of test problems. The other is to attempt to maximize the function in terms of
the problem data, using an optimization routine. This latter technique is investigated in
Higham (1993) (see also Higham (1996, Ch. 24)), where direct search methods are shown
to be appropriate. The optimization technique is, in general, much more likely to reveal
bugs than random tests, but it can be very computationally expensive and, in view of the
unpredictable performance of direct search methods, is not easy to automate.

∗At the time of writing the current version of LAPACK is LAPACK 2.0 (September 30, 1994) and the
release of LAPACK 3.0 is imminent. Unless stated otherwise, all comments about LAPACK in this paper
refer to LAPACK 2.0.
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We mention briefly some other approaches to testing. Miller and his coauthors (Miller
1975), (Miller & Spooner 1978b), (Miller & Spooner 1978a), (Miller & Wrathall 1980)
define a quantity σ(d) that bounds, to first order, the sensitivity of an algorithm to per-
turbations in the data d and in the intermediate quantities that the algorithm generates.
They then define the forward stability measure ρ(d) = σ(d)/κ(d), where κ(d) is a con-
dition number for the problem under consideration. The algorithms to be analysed are
presented to Miller’s Fortran software expressed in a Fortran-like language that allows
for-loops but not logical tests (thus Miller’s software is unable to test genuine Fortran
programs). The software automatically computes the partial derivatives needed to eval-
uate ρ(d), and attempts to maximize ρ over the data d using the method of alternating
directions. This approach is designed for searching for instability in an algorithm rather
than testing the correctness of a particular implementation, since the condition number
κ(d) will be correctly computed only if the encoding of the algorithm is correct.

Rowan (1990) develops another way to search for numerical instability. For an algorithm
with data d he maximizes S(d) = e(d)/κ(d) using a new direct search maximizer called
the subplex method (which is based on the Nelder-Mead simplex method (Nelder & Mead
1965)). Here, e(d) = yacc − ŷ is an approximation to the forward error in the computed
solution ŷ, where yacc is a more accurate estimate of the true solution than ŷ, and the
condition number κ(d) is estimated using finite difference approximations. The quantity
S(d) is a lower bound on the backward error of the algorithm at d. Fortran software
given in Rowan (1990) implements this “functional stability analysis”. The software takes
as input two user-supplied Fortran subprograms; one implements the algorithm to be
tested in single precision, and the other provides a more accurate solution, typically by
executing the same algorithm in double precision. The examples in Rowan (1990) show
that Rowan’s software is capable of detecting numerical instability in a wide variety of
(Fortran implementations of) numerical algorithms.

Our concern in this work is with basic issues common to all computing environments. We
do not discuss problems arising in parallel implementation of algorithms, in particular,
those related to the use of heterogeneous networks of processors (Demmel, Dongarra,
Hammarling, Ostrouchov & Stanley 1996).

2 TESTING STABILITY AND ACCURACY

2.1 Backward and Forward Errors

If we have a backward error analysis for an algorithm then a natural way to test a
corresponding code is to check that the theoretical error bounds are satisfied. An apparent
complication is that most rounding error analyses are derived for one particular sequence
of arithmetic operations, without explicit consideration of all the possible orderings of
sums, for example. However, many published error bounds are valid for any ordering of
the operations, because of majorizations used during the derivation. For those bounds
that are ordering dependent, it is usually only the constant terms that are affected and
the constants are of limited importance for testing purposes.

The approach we consider, then, requires comparison of the backward error with an
a priori backward error bound. Obviously, we must be able to compute the backward
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error of an arbitrary approximate solution to the problem. For a matrix factorization
A = XY Z ∈ IRn×n there is a unique matrix ∆A such that

A+∆A = X̂Ŷ Ẑ, (1)

where X̂, Ŷ and Ẑ are the computed factors: ∆A is precisely the residual A− X̂Ŷ Ẑ, and
its norm is the natural definition of backward error. It may be necessary to verify certain
properties of the computed factors, such as closeness to orthogonality. For some problems,
however, computing the backward error is a nontrivial task. Perhaps the best example is
the least squares problem, as explained below.

A traditional backward error analysis for a factorization of the form (1) typically shows
that

‖∆A‖ ≤ p(n)g(n)u‖A‖, (2)

where u is the unit roundoff, p is a polynomial of third or lower degree, and g is a growth
factor (which is present only in factorizations involving non-orthogonal transformations).
The norm will depend on the analysis, and is usually the 1-, 2- or∞-norm. The polynomial
p inevitably is the result of many applications of the triangle and submultiplicative in-
equalities; it causes the error bound to be unattainable and usually to be several orders of
magnitude larger than the quantity it is bounding. An often-quoted rule of thumb, which
can be supported by statistical arguments, is that a more realistic error bound is obtained
by replacing p by its square root (see, for example, Wilkinson (1963, pp. 26, 102)). Even
if we take the square root of p, the bound can be pessimistic. For example, in experiments
on random matrices reported in the LINPACK Users’ Guide (Dongarra, Bunch, Moler
& Stewart 1979, p. 1.21) it was found that for LU factorization with partial pivoting

‖A − L̂Û‖1/‖A‖1 behaved like a linear function of n. It is important to realize that the
lowest available degree of p depends on both the method and the norm (Higham 1996,
pp. 177, 206, Problem 10.5):

• For LU factorization, p is cubic for the ∞-norm but only quadratic for the M -norm,
‖A‖M := maxi,j |aij|.
• For Cholesky factorization, p is quadratic for the 2-norm but only linear for the M -

norm.

The growth factor term g(n) in (2) is rarely computed by software as a matter of course,
and for LU-type factorizations is usually small in practice.

For an a posteriori stability test for a factorization of A ∈ IRn×n, then, we can use a
test of the form

‖∆A‖ ≤ f(n)u‖A‖,

for some “modest” function f . The LAPACK test routines use the 1-norm and take f(n) =
30n for LU factorization with partial pivoting (for both real and complex matrices);
the LINPACK test routines also use the 1-norm and take the more conservative choice
f(n) = n.



Testing Stability and Accuracy 5

For LU-type factorizations the more modern, componentwise style of analysis typically
gives, instead of (2), a bound of the form

|∆A| ≤ p(n)u|X̂||Ŷ ||Ẑ|, (3)

where the absolute value of a matrix, and the matrix inequality, are defined compo-
nentwise. In fact, (3) yields a bound of the form (2) on taking norms, the growth fac-

tor term g(n) emerging from bounding |X̂||Ŷ ||Ẑ|. By their derivation, componentwise
bounds involve less triangle and submultiplicative inequalities, so are sharper than norm-
wise bounds, with less pessimistic constant terms. Indeed, the polynomial p in (3) is linear
for the LU, Cholesky and symmetric indefinite factorizations (Higham 1996, pp. 175, 206,
223). The componentwise bound (3) has the drawback that it requires a significant amount
of extra computation and storage to evaluate.

For linear equation problems Ax = b, possibly over- or underdetermined, there are
many perturbed systems (A + ∆A)x = b + ∆b for which an approximate solution y is
an exact solution, and some analysis is required to determine the smallest perturbations,
which define the backward error. For A ∈ IRn×n, the following normwise backward error
result is well known (Rigal & Gaches 1967): for any subordinate matrix norm,

η(y) := min{ ε : (A+∆A)y = b+∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖ }

=
‖r‖

‖A‖ ‖y‖+ ‖b‖
,

where r = b−Ay. Similarly, we have the componentwise backward error result (Oettli &
Prager 1964)

ω(y) := min{ ε : (A+∆A)y = b+∆b, |∆A| ≤ ε|A|, |∆b| ≤ ε|b| }

= max
i

|ri|
(|A||y|+ |b|)i

.

Therefore the normwise and componentwise backward errors for a square linear system
are easily computed, at the cost of forming a residual. Most standard linear equation
solvers are normwise backward stable but not always componentwise backward stable, so
it is η(x̂) that is the appropriate quantity to test against a multiple of the unit roundoff.

When A ∈ IRm×n and m 6= n, appropriate definitions of backward error require that
y is the least squares solution to (A + ∆A)y = b + ∆b when m > n, or is the minimum
2-norm solution to (A + ∆A)y = b + ∆b when m < n. For a long time it was an open
problem to find computable expressions for these two backward errors (see, e.g., Stewart
(1977)). Recent solutions are given by Waldén, Karlson & Sun (1995) and Sun & Sun
(1997) for the case of normwise backward errors; the expressions involve the solution of
singular value problems, and hence are relatively expensive to evaluate. It is ironic that
while we have known since the mid 1960s that Householder QR factorization provides
a backward stable way to solve the linear least squares problem, we have only recently
found a way to verify numerically that the computed solution does indeed have a small
normwise backward error.

Instead of evaluating the backward error of a computed solution, we could evaluate its
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forward error: thus for a linear system Ax = b, for example, we could compute ‖x−x̂‖/‖x‖.
This approach requires the computation of an exact, or “sufficiently accurate”, solution x,
together with the computation or estimation of a condition number, so that the acceptable
size of the forward error can be determined. Whether the backward error or forward error
should be computed depends on the underlying algorithm. All the linear equation solvers
in LAPACK are backward stable (unless large element growth occurs), and so for them it
is enough to test the backward error, since a small backward error implies an acceptably
small forward error. There are certain algorithms, however, that are forward stable (that
is, they have a forward error bounded in the same way as for a backward stable method),
but not backward stable, and for these it may be preferable to test the forward error (if
a sharp backward error bound, albeit possibly large, is not available, then there is no
choice). A simple example of such an algorithm is Cramer’s rule for solving a 2×2 system
(Higham 1996, §1.10.1).

In connection with testing the forward error, we recall that an old technique for test-
ing linear algebra codes is to generate a problem with known solution and compare the
computed and known solutions. For example, a matrix A ∈ IRn×n and vector x ∈ IRn

are chosen and a right-hand side is generated as b = Ax; the system is solved to yield a
computed x̂ and the relative error ‖x− x̂‖∞/‖x‖∞ is computed. What is often overlooked
is that x is not the true solution to the system, because of rounding errors in forming b:
we actually compute

b̂ = fl(Ax) = Ax+∆b, |∆b| ≤ γn|A||x|,

where γn = nu/(1− nu) (Higham 1996, §3.5). Thus

|x− A−1b̂| ≤ γn|A−1||A||x|. (4)

Now x − x̂ = (x − A−1b̂) + (A−1b̂ − x̂), so the quantity that we can compute, x − x̂,

differs from the true, but unknown, error A−1b̂ − x̂ by at most the bound in (4). If
we are testing a normwise backward stable method then we will be testing whether the
normwise relative error ‖x−x̂‖/‖x‖ is of order κ(A)u, where the condition number κ(A) =
‖A‖‖A−1‖. In view of the bound (4), we can safely conduct this test using x− x̂. However,
in situations where we need several correct significant figures in the computed relative
error (for example, when testing a mixed-precision iterative refinement routine), the error
in forming b is significant and a sufficiently accurate solution must be obtained by some
other means.

For the eigenproblem, definitions of backward error are less clearcut. Consider a Schur
decomposition of A = QTQ∗ ∈ IRn×n, where Q is unitary and T is upper triangular, both
complex in general. For the computed factors Q̂ and T̂ , natural tests are that ‖Q̂∗Q̂− I‖
and

‖A− Q̂T̂ Q̂∗‖/‖A‖ (5)

are bounded by appropriate multiples of u. We note the result from Higham (1994) that

‖ATA− I‖
‖A‖2 + 1

≤ min{ ‖A− U‖ : UTU = I } ≤ ‖ATA− I‖,
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where ‖ · ‖ denotes any unitarily invariant norm; this result shows that the quantity

‖Q̂∗Q̂−I‖ is an appropriate measure of orthogonality, being within a factor about 2 of the

distance to the nearest orthogonal matrix to Q̂ as long as ‖Q̂‖2 ≈ 1. Interestingly, although
(5) does have a bound of the form p(n)u, this is not what the standard error analysis shows.
Error analysis for the Schur decomposition is usually presented in the form that says there
exists a unitary Q (not necessarily close to Q̂) such that ‖A−QT̂Q∗‖/‖A‖ ≤ p(n)u (see,
e.g., Golub & Van Loan (1989, p. 381)). Correspondingly, an appropriate definition of

backward error for T̂ alone is

min{ ‖A−QT̂Q∗‖ : Q∗Q = I }.

Finding a closed-form expression for this quantity, or an efficient algorithm for computing
it, is an open problem.

Testing implementations of iterative algorithms is more difficult than for direct algo-
rithms. These algorithms involve convergence tolerances, which, naturally, must be taken
into account by the error tests. The choice of the smallest tolerance to be used must be
guided by known stability or accuracy properties of the algorithm—we cannot necessarily
expect an iterative linear equation solver to produce a backward error of order u, for exam-
ple, even for a stationary iterative method (Higham 1996, Ch. 16). A further complicating
factor is that an iterative solver could fail to converge in floating point arithmetic on a
problem for which it converges in exact arithmetic (for example, the Gauss-Seidel method
fails to converge on a certain problem where the iteration matrix has spectral radius 1/2
(Higham 1996, Ch. 16)). For discussions of the choice and influence of stopping criteria for
iterative linear equation solvers, see Barrett, Berry, Chan, Demmel, Donato, Dongarra,
Eijkhout, Pozo, Romine & van der Vorst (1994, Ch. 4) and Higham (1996, §16.5).

2.2 Test Matrices

The construction of test matrices has occupied numerical analysts since the early days of
digital computers, as many papers about test matrices from the 1950s and 1960s testify.
Much effort has been spent devising matrices that satisfy one or both of the properties of
being “difficult” for linear algebra algorithms to work with (for example, being ill condi-
tioned, or having close or repeated eigenvalues) and of having known inverse, eigenvalues,
Jordan form, etc. The classic test matrix, which seems to have an endless fascination
for mathematicians (Choi 1983), (Todd 1954), is the Hilbert matrix, with (i, j) element
1/(i+ j−1). It is well known that the Hilbert matrix is very ill conditioned for even mod-
erate values of n, that the elements of the inverse are integers and are known explicitly,
and that the matrix arises in a practical problem: least squares fitting by a polynomial
expressed in the monomial basis. What is less well appreciated is that the Hilbert matrix
is a poor test matrix, because it is too special: it is symmetric positive definite and to-
tally positive (every submatrix has positive determinant). This means, for example, that
Gaussian elimination without pivoting is guaranteed to produce a small componentwise
relative backward error. Furthermore, since the Hilbert matrix cannot be exactly repre-
sented in floating point arithmetic, the fact that the inverse is known is of less use than
it appears.

Specific matrices, such as the Hilbert matrix, are certainly useful to the researcher
during the development of theory and algorithms. Matlab contains a few such matri-
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ces and a substantial collection is provided in the Test Matrix Toolbox (Higham 1995b),
(Higham 1996, App. E). However, of more general use for the testing of software are ran-
dom matrices and, particularly for large sparse problems, matrices from applications. A
standard technique for constructing random matrices with given eigenvalue or singular
value properties is to choose a diagonal or triangular matrix containing the desired eigen-
values or singular values and to pre- and postmultiply by random orthogonal or unitary
matrices, or to perform a random similarity transformation. This technique is sometimes
used with a random orthogonal matrix constructed by multiplying together a small num-
ber of random Householder transformations, but such matrices are low rank corrections
to the identity and hence are not completely random. A truly random orthogonal matrix,
in an appropriate technical sense, is obtained from the QR factorization of a random ma-
trix from the normal (0, 1) distribution (using qr(randn(n)) in Matlab, for example),
which can be computed more efficiently as a product of random Householder matrices
of increasing effective dimension (Stewart 1980). The LAPACK test software constructs
test matrices in the way just outlined, as does the routine randsvd.m in the Test Matrix
Toolbox.

It is important to realise that random matrices have their limitations for testing pur-
poses, in two main respects. First, they tend to reveal average behaviour rather than
worst case behaviour. For example, practical experience shows that large growth factors
are extremely unlikely to be observed for random matrices. Similarly, poor performance
of condition estimators is extremely rare for random matrices. Second, random matrices
can sometimes have undesirable structure. For example, random matrices from the uni-
form [0, 1] distribution (randu(n) in Matlab) tend to have one large dominant positive
eigenvalue and the other eigenvalues small and of either sign (Andrew 1990).

Large, nonrandom matrices drawn from practical problems are available from a number
of sources. Bai (1994) describes a collection of test matrices for large-scale nonsymmetric
eigenvalue problems. The Harwell–Boeing collection of sparse matrices is described by
Duff, Grimes & Lewis (1989) and Duff, Grimes & Lewis (1992). This collection, together
with other test matrices from practical problems, is available over the World Wide Web
from the Matrix Market page at URL http://math.nist.gov/MatrixMarket/.

3 LAPACK’S TEST SOFTWARE

LAPACK contains a set of programs that thoroughly test all the LAPACK routines. The
test programs reside on the path LAPACK/TESTING of the LAPACK distribution and are
described in detail in Anderson, Dongarra & Ostrouchov (1992).

Consider, first, the linear equation routines. LAPACK tests these routines on a variety
of different n× n matrices chosen, according to the matrix type, from the following list:

• diagonal, upper and lower triangular;

• random with three different 2-norm condition numbers (2,
√

0.1/u and 0.1/u);

• first, last, middle or last n/2 columns zero; scaled near underflow and overflow;
• random with unspecified condition number;
• block diagonal.

The matrices with zero columns are used to test the error return codes. For each matrix a
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number of error statistics are computed. Each statistic is tested against a single threshold,
whose value, set in a data file, is 30. Warning messages are written out when a ratio exceeds
the threshold. In each case κ1(A) denotes a computed condition number, not a condition
number estimate, and hats denote computed quantities.

• The matrix is factored using xyyTRF† and the ratio

‖A− L̂Û‖1
n‖A‖1u

(6)

is computed.

• The matrix is inverted using xyyTRI, producing X̂, and the ratio‡

‖X̂A− I‖1
nκ1(A)u

is computed.
• A linear system Ax = b is solved using xyyTRS and the ratios

α =
‖b− Ax̂‖1
‖A‖1‖x̂‖1u

, β =
‖x− x̂‖1
‖x̂‖1κ1(A)u

, (7)

are computed where x is the “exact solution”, that is, the (random) vector used to
generate the right-hand side. The reason for testing the forward error is not clear,
since, mathematically, if α is less than the tolerance, then β must also be less than the
tolerance.
• Iterative refinement (xyyRFS) is used to improve the solution computed by xyyTRS. For

the refined solution x̂, the ratios

‖x− x̂‖1
‖x‖1κ1(A)u

,
η

u
,
‖x− x̂‖1
‖x‖1ξ

, (8)

are computed, where η is the componentwise relative backward error returned by
xyyRFS and ξ is the forward error bound returned by xyyRFS (which is computed
with the aid of a condition estimator and hence could, potentially, fail to bound the
error).
• The 1-norm condition number κ1 is computed and the maximum of the ratios κ1/κ̂1

and κ̂1/κ1 is computed, where κ̂1 is the condition estimate computed by xyyCON.

The condition number test raises the issue mentioned in §1 of testing the implementation
versus testing the underlying algorithm. The condition estimator used in LAPACK, from
Higham (1988), provides a lower bound that is nearly always within a factor 3 of the
true condition number; however, it can underestimate the true condition number by an

†In the LAPACK naming convention x denotes the data type, which is one of S, D, C, and Z, and yy

denotes the type of matrix, of which there are 27 in all.
‡See §4.3



10 Testing Linear Algebra Software

arbitrary factor. Therefore the threshold in the LAPACK test could be exceeded due to
failure of the underlying condition estimation algorithm, though this event is extremely
unlikely. One might expect that a poor condition estimate could be produced for another
reason: the estimator makes use of an LU (or related) factorization, and if the computed
factorization is a poor one because of large element growth, the condition estimate will
necessarily be poor. However, the “exact” condition number κ1 is computed from the same
factorization, so both condition numbers always relate to the same, possibly incorrect,
matrix and large growth does not necessarily adversely affect the test. Note that the second
ratio in (7) and the third ratio in (8) could exceed the threshold when x̂ is computed from
an unstable factorization resulting from large element growth; the LAPACK test routines
do not take any special precautions for this unlikely event, which would in any case almost
certainly be signalled by the ratio (6).

For the least squares solvers for overdetermined systems, LAPACK 2.0 does not compute
the backward error of the computed solution. Instead, it checks that the residual is nearly
orthogonal to the column space of the coefficient matrix and that, for systems specially
constructed to be consistent, the relative residual is small. Theoretically, these tests could
both be passed by a routine that is not backward stable. The actual backward error could
be computed using the formula from Waldén et al. (1995) in order to produce a more
stringent test of the solvers.

For the eigenvalue and singular values routines, LAPACK tests a variety of residuals,
such as (5) for the Schur decomposition, and checks that matrices X that would be
orthogonal or unitary in exact arithmetic have a sufficiently small value of ‖X∗X − I‖1.
Again, a variety of test matrices is used, in particular, corresponding to different eigenvalue
or singular value distributions.

The LAPACK routines that form random matrices with given singular values, eigenval-
ues, band structure, and other properties, are located in the directory LAPACK/TESTING/MATGEN

of the LAPACK distribution. These routines (whose names are of the form xLAzzz) are
not described in the LAPACK Users’ Guide (Anderson, Bai, Bischof, Demmel, Dongarra,
Du Croz, Greenbaum, Hammarling, McKenney, Ostrouchov & Sorensen 1995), but earlier
versions of the routines are described in Demmel & McKenney (1989).

4 CASE HISTORIES

We briefly describe some interesting examples of bugs in widely used linear algebra soft-
ware.

4.1 Matlab’s rcond

Matrix condition number estimators attempt to approximate the condition number κ(A) =
‖A‖‖A−1‖ of a nonsingular A ∈ IRn×n cheaply, given some factorization of the matrix.
They break into two classes: statistically based estimators that use random numbers, and
the more frequently used non-statistical estimators such as are employed in LINPACK
and LAPACK. For statistically based estimators there may exist results on the distribu-
tion of the estimates that can be checked numerically after a sufficiently large number
of trials. The non-statistical estimators, however, are based on heuristics that provide no
guarantees about the quality of the estimate (indeed, on specially chosen examples both
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the LINPACK and LAPACK estimators provide estimates that are too small by a factor
that can be chosen arbitrarily); this makes these estimators difficult to test, because a
poor estimate could be due to an implementation error or a failure in the algorithm itself.
As noted in §3, LAPACK tests that the computed and estimated condition numbers do
not differ by more than the threshold of 30. This test has apparently never failed for the
test matrices used by the software.

Matlab includes a function rcond that produces an upper bound for κ1(A)−1; it is a
direct translation of the LINPACK condition number estimator. The Release Notes for
Matlab 4.1 state that “This release of Matlab fixes a bug in the rcond function. Pre-
viously, rcond returned a larger than expected estimate for some matrices . . . rcond now
returns an estimate that matches the value returned by the Fortran LINPACK library.” In
some experiments on direct search in Higham (1993) we used Matlab 3.5, and we found
it much easier to generate counterexamples to rcond (examples in which rcond provides
an estimate that is much too large) than we do now with Matlab 4.2. It seems that the
maximizations in Higham (1993) were not only defeating the algorithm underlying rcond,
but also, unbeknown to us, exploiting a bug in the implementation of the function. The
conclusions of Higham (1993) are unaffected, however.

4.2 LAPACK’s Symmetric Indefinite Factorization

The most popular methods for solving a dense symmetric indefinite linear system Ax = b,
A ∈ IRn×n, compute a symmetric indefinite factorization

PAP T = LDLT ,

where P is a permutation matrix, L is unit lower triangular and D is block diagonal with
diagonal blocks of dimension 1 or 2. LAPACK includes an implementation of the symmet-
ric indefinite factorization with the partial pivoting strategy of Bunch & Kaufman (1977)
(routine xSYTRF). An unusual feature of the partial pivoting strategy, whose implications
for stability were first pointed out by Ashcraft, Grimes & Lewis (1995) and Higham
(1995a), is that ‖L‖∞/‖A‖∞ can be arbitrarily large, even though the factorization itself
is backward stable.

The implementation of the symmetric indefinite factorization with partial pivoting in
LAPACK 2.0 can be unstable when ‖L‖∞ is large, as pointed out and explained by
Ashcraft et al. (1995). The potential instability stems from replacing a symmetric rank-
2 update by two rank-1 updates, via the use of an eigendecomposition, a change that
is enough to upset the rather delicate stability of the partial pivoting strategy. This
instability has not been detected by the LAPACK test software and so far has been
observed only on examples specially constructed by Ashcraft et al. (1995). The problem
is corrected in LAPACK 3.0.
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4.3 LAPACK’s Matrix Inversion Tests

The test software in LAPACK 2.0 tests the general matrix inversion routine by checking
that the ratio

‖AX̂ − I‖1
nuκ1(A)

(9)

is less than a threshold. However, for the particular algorithm used in LAPACK, this ratio
is not bounded independently of A, and it is the ratio

‖X̂A− I‖1
nuκ1(A)

that is so bounded, as explained in Du Croz & Higham (1992) and Higham (1996, §13.3).
This error apparently has not lead to the test being failed in any of the instances when
the test software was run, indicating that for the random matrices used the ratio (9) has
always been smaller than the threshhold.

Interestingly, precisely the same error is present in the LINPACK test software. Indeed,
the LINPACK manual states that the computed inverse X̂ of A from routine xGEDI

satisfies ‖AX̂ − I‖1 ≤ dnu‖A‖1 ‖X̂‖1 (Dongarra et al. 1979, p. 1.20), whereas it is the left

residual ‖X̂A − I‖1 that is bounded this way, since LINPACK uses the same inversion
algorithm as LAPACK.
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