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THE ACCURACY OF FLOATING POINT SUMMATION*
NICHOLAS J. HIGHAMt

Abstract. The usual recursive summation technique is just one of several ways of computing the sum of
n floating point numbers. Five summation methods and their variations are analyzed here. The accuracy of
the methods is compared using rounding error analysis and numerical experiments. Four of the methods are
shown to be special cases of a general class of methods, and an error analysis is given for this class. No one
method is uniformly more accurate than the others, but some guidelines are given on the choice of method in
particular cases.
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1. Introduction. Sums of floating point numbers are ubiquitous in scientific com-
puting. They occur when evaluating inner products, means, variances, norms, and all
kinds of nonlinear functions. Although, at first sight, summation might appear to offer
little scope for algorithmic ingenuity, the usual "recursive summation" (with various or-
derings) is just one of several possible techniques. Most of the other techniques have
been derived with the aim of achieving greater accuracy of the computed sum, but pair-
wise summation has the advantage of being particularly well suited to parallel computa-
tion.

In this paper we examine a variety of methods for floating point summation, with
the aim of answering the question, "which methods achieve the best accuracy?" Several
authors have used error analysis to compare summation methods; see, for example, [1],
[2], [32], and [38]. Here we give a more comprehensive treatment that highlights the
relationships between different methods; in particular, we give an error analysis for a
general class ofmethods that includes most of the specific summation methods as special
cases.

This work was motivated by two applications in which the choice of summation
method has been found to have an important influence on the performance of a nu-
merical method.

(1) In [24], Lasdon et al. derive an algorithm for solving an optimization problem
that arises in the design of sonar arrays. The authors state [24, p. 145] that "the objective
gradient Vf in (4.1) is a sum of M terms. In problems with M 284 and n 42, the
GRG2 optimizer encountered difficulties which stem from inaccuracies in Vf We
hypothesized that this was due to roundoff error resulting from cancellation of terms in
Vf of approximately equal magnitudes and opposite signs. These problems were elim-
inated by accumulating separately positive and negative terms (for each component of
Vf) in the sum (4.1), adding them together only after all M terms had been processed."

(2) Dixon and Mills [7] applied a quasi-Newton method to the extended Rosenbrock
function

(1.1) ’’’ )2F(Xl x2 xn) E(IOO(x2i- x22i_1 + (1 x2i_1)2).
i=1

This function and its derivatives possess certain symmetries; for example, F(a, b, c, d)
F(c, d, a, b) when n 4. It is observed in [7] that expected symmetries in the search
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784 NICHOLAS J. HIGHAM

direction and Hessian approximation are lost in practice, resulting in more iterations for
convergence of the quasi-Newton method than are predicted theoretically. Dixon and
Mills attribute the loss of symmetry to rounding errors in the evaluation of certain inner
products, which can cause identities such as the one quoted above to fail in floating point
arithmetic. They restore symmetry (and thus reduce the number of iterations) by using a
special summation algorithm when evaluating inner products: their algorithm evaluates

Y’. x by sorting the x, dividing them intoa list of negative numbers and a list of
nonnegative numbers, and then repeatedly forming the sum of the largest nonnegative
and most negative elements and placing the sum into the appropriate list, in order.

We return to these two applications in 7.
The five main summation methods that we consider are defined and analyzed in 2

and 3. For the error analysis we will make use of the standard model of floating point
arithmetic, in which u is the unit roundoff:

(1.2) fl(x op y)= (z op y)(X + 6), 161 < u, op +,-, ,,/.

This model is violated by machines that lack a guard digit, so we explain in 5 how our
analysis has to be modified to accommodate such machines. We will assume that no
floating point underflows occur; how to modify error analyses to allow for underflow
is described by Demmel in [6]. An excellent tutorial on many aspects of floating point
arithmetic is given by Goldberg [9].

In 4we summarize some existing results on statistical estimates of accuracy of sum-
mation methods. Numerical experiments are presented in 6 and conclusions are given
in 7.

2. Orderings ofrecursive summation. Our task is to evaluate & -i= xi, where
z,..., z, are real numbers. In this section we consider the standard recursive summa-
tion technique in which S is evaluated according to

a’-O
for/= l’n

8--’8"{-Xi
end

In general, each different ordering of the xi will yield a different computed sum
in floating point arithmetic, and it is of interest to determine how the ordering affects
the error

En=Sn-S.
To begin, we make no assumption on the ordering and obtain a standard bound for

kE,. By a direct application of the model (1.2) we have, with Sk -,i= xi,

(2.1) Sk fl(S_l + xk)= (Sk- + xk)(1 + 5k), lakl <_ u, k 2: n.

By repeated use of this relation it follows that
n n n

(2.2) n (x, + x2) H (1 + k) + Xi H(1 + dik).
k:2 i:3 k=i

To simplify the product terms we use the result that if lai[ <_ u for i l’n then
n

H(1+6i)=l+0’’ where IOnl 1- nu
< nu

)’n.
i=1
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Thus we rewrite (2.2) as

(2.3) g. (x + x)(1 + 0,_) + x(1 + O.-i+),

which yields
n

(2.4) IE,I I(zl + xz)On- + ZxiOn-i+l

(2.5) < (IXll /
i=3

Note that xx and xz have the same factor 7-, because they play identical roles in the
summation. e bound (2.5) is essentially the same as the one derived by Wilkinson in
[42, p. 323] and [43, p. 17]. As Wilkinson notes in [43, p. 17], the upper bound in (2.5)
depends on the order of summation, and the bound is minimized if the xi are arranged in
order of increasing absolute value. We emphasize that this ordering minimes an error
bound and not necessarily the actual error (this is illustrated later in this section, and by
numerical examples in 6). We can weaken (2.5) to obtain the bound

n n

(2.6) lEvi 7-x [xi[ (n- 1)u Ix, + O(u2),
i=1 i=1

which is independent of the ordering. It is natural to regard satisfaction of (2.6) as a
minimal requirement of any summation method; in fact, all the methods we will examine
do satis this bound.

We can rewrite (2.6) as the relative error bound

In the special case where x 0 for all u, R, 1, and the relative error has a bound
of order nu, but ifi Ix l we cannot guarantee that the relative error
is small. The quantiR is easily seen to be the condition number of summation when
perturbations xi + xi + Ax are measured bym I x I/Ix l.

RecursNe summation by order of increasing absolute value can be improved upon
in o possible ways. First, a method may satis a bound of the form (2.6) but with a
constant smaller than 7-. Second, a method may satis a bound that in the worst
case is no better than (2.6), but the method might be expected to yield a more accurate
computed sum for particular classes of {x}. In the rest of this section we considero
alternatNe orderings, which fall into the second catego.

First, we derive a shawer error bound. From (2.1) we see that the error introduced
on the kth step of the summation is (S_ + x) S/(1 + g). Summing these
individual errors we find

n

(2.7) En l+6k’k=2

which shows that, to first order, the overall error is the sum of the n- 1 relative rounding
errors weighted by the partial sums. We obtain the bound

n

(2.8)
-1-u



786 NICHOLAS J. HIGHAM

This bound involves the computed partial sums (excluding $1 Zl) but not the individ-
ual terms z. Ifwe weaken (2.8) by bounding I1 in terms of Izl, Iz21, Izl, then we
recover (2.5), to within O(u2).

The bound (2.8) suggests the strategy ofordering the zi so as to minimize -=2 I1.
This is a combinatorial optimization problem that is too expensive to solve in the context
of summation. A reasonable compromise is to determine the ordering sequentially by
minimizing, in turn, (xll, IS21, Is-xl. This ordering strategy, which we denote by
Psum, can be implemented with O(n log n) comparisons. The principal difference be-
tween the Psum and increasing orderings is that the Psum ordering is influenced by the
signs of the xi, while the increasing ordering is independent of the signs. If all the xi
have the same sign then the two orderings are identical.

It is easy to show by example that the bounds (2.8), (2.5) and (2.6) are nearly at-
tainable. Following Wilkinson [43, p. 19] we assume u 2-t, set n 2r (r << t), and
define

x(1) 1,

x(2) 1-2-t,
x(3: 4) 1 2l-t,
x(5: 8) 1 22-t,

x(2r-1 + 1:2r) 1- 2r--t.

Then in the (i 1)st floating point addition the "2-t’’ portion ofx does not propagate
into the sum; thus there is an error of 2k-t and i. The total error is

2-t(1+ 22 + 24 +... + 22(r-l)) 2-t
4r 1

3

while the upper bound of (2.6) is

(n- 1)u n 2,.2_
< 2

(n-1)u 1- 22-t
.. 2

1

which agrees with the actual error to within a factor 3; thus the smaller upper bounds
of (2.5) and (2.8) are also correct to within this factor. The example just quoted is, of
course, a very special one, and as Wilkinson [43, p. 20] explains, "in order to approach
the upper bound as closely as this, not only must each error take its maximum value, but
all the terms must be almost equal."

Next, we consider ordering the x by decreasing absolute value. For the summation
of positive numbers this ordering has little to recommend it. The bound (2.8) is no
smaller, and potentially much larger, than for the increasing ordering (the same is true
for the weaker bound (2.5)). Furthermore, in a sum of positive terms that vary widely
in magnitude, the decreasing ordering may not allow the smaller terms to contribute to
the sum (which is why 1/i "converges" in floating point arithmetic as n
However, consider the example with n 4 and

(2.9) z=[1, M, 2M,-3M],

1We assume in this example that the floating point arithmetic uses round to nearest with ties broken by
rounding to an even last bit or rounding away from zero.
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where M is a power of the machine base and is so large that fl(1 + M) M (thus
M > u-1). The three orderings considered so far produce the following results:

Increasing:

Psum:

Decreasing:

Sn fl(1 + M + 2M- 3M) 0,

Sn fl(1 + M- 3M + 2M) 0,

Sn fl(-3M + 2M + M + 1) 1.

Thus the decreasing ordering sustains no rounding errors and produces the exact answer,
while both the increasing and Psum orderings yield computed sums with relative error 1.
The reason why the decreasing ordering performs so well in this example is that it adds
the "1" after the inevitable heavy cancellation has taken place, rather than before, and
so retains the important information in this term.

Ifwe evaluate the term # Y=2 Igkl in the error bound (2.8) for the example (2.9)
we find

Increasing: # 4M, Psum: # 3M, Decreasing: # M + 1,

so (2.8) "predicts" that the decreasing ordering will produce the most accurate answer,
but the bound it provides is extremely pessimistic since there are no rounding errors in
this instance. This example illustrates the main weakness of bounds from a rounding
error analysis: they represent the worst case and so do not account for the possibility
that rounding errors may cancel or be smaller than expected.

Extrapolating from this example, we conclude that the decreasing ordering is likely
to yield greater accuracy than the increasing or Psum orderings whenever there is heavy
cancellation in the sum, that is, whenever Y]i=l x << ’i=1 Ix I. A numerical example
that illustrates this assertion is given in 6 (see Table 6.1).

3. Other methods. In this section we consider in detail four more summation meth-
ods. The first three of these methods, together with recursive summation, have the fol-
lowing general form: with T zk, k 1: n, they perform n I additions

(3.1) Tk Tk. + Tk2, kl < k2 < k, k n + 1: 2n- 1,

yielding S, T2,-1. In recursive summation, kl < n in each instance of (3.1), but
for the other methods at least one addition involves two previously computed sums. A
useful expression for the error in this general class of summation methods can be derived
as follows. The computed quantities Tk satisfy

(3.2) Tk (Tk + Tk .)(1 + I kl U, k n + 1: 2n 1.

The local error introduced in forming Tk is (Tkl + T2)6 T,6,/(1 + 6,), so overall we
have

2n-1
6k(3.3) n S, k 1 + 6k

k=n+l

The smallest possible error bound is therefore

2--1

(3.4) iEnl <
u Z Il"

k=n+
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It is easy to see that ITkl -- Ixl + O(u) for each k, and so we also have the weaker
bound

n

(3.5) I1 < (n 1)uE Ix"l + O(u2)"

Note that in the case of recursive summation (3.3)-(3.5) are the same as (2.6)-(2.8).
Finally, we note in passing that from (3.2) there follows a backward error result which
shows that S, is the exact sum of terms zi(1 + 0), where 10[ O(u).

The first method we consider is pairwise summation (also known as cascade sum-
mation), which was first discussed by McCracken and Dorn [29, pp. 61-63], Babuka [1],
and Linz [27]. In this method the zi are summed in pairs,

yi X2i--1 + X2i, i 1" [] (Y[(n+l)/2] x, if n is odd),

and this pairwise summation process is repeated recursively on the yi, i 1 [(n+ 1)/2].
The sum is obtained in log2 n] stages. For n 6, for example, pairwise summation
forms

$6 ((Xl -- x2) -- (x3 -- x4)) -- (x5 -- x6).

Pairwise summation is attractive in parallel settings, because each of the [log2 n] stages
can be done in parallel [13, 5.2.2]. Caprani [4] shows how to implement the method on
a serial machine using temporary storage of size [log2 n] (without overwriting the zi).

The error expression (3.3) holds for pairwise summation, but it is easy to derive a
useful error bound independently. Assume for simplicity that n 2r. Unlike in recur-
sive summation each addend takes part in the same number of additions, log2 n. There-
fore, analogously to (2.2), we have a relation of the form

n log2 n

6(ki)’=Exi n (1+ ),
i=1 k=l

which leads to the bound
n

(3.6) lEvi Ix l.
i=1

This is a smaller bound than (2.6) for recursive summation, since it is proportional to
logg. n rather than n. However, in special cases the bound (2.5) for recursive summation
can be smaller than (3.6). For example, if xi 1/ia, the bound (3.6) is

(3.7) IEnl 1.20 log2 n u + O(u2)

(using Ein__l 1/i =1 1/ia 1.20), while for the increasing ordering (2.5) becomes

n
1

n
1

lEvi _< u 1= (n + 1)3 (n
i + 1) + O(u2) u Ei=I fi + O(u2) 1.64u + O(u2)

(using ’i1 1/i2 2i=1 1/i2 7r2/6 1.64), and so pairwise summation has the
larger error bound, by a factor log2 n. (Expression (3.3) does not enable us to improve
on the factor log2 n in (3.7).)
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In [35] an "insertion adder" is proposed for the summation ofpositive numbers. This
method can be applied equally well to arbitrary sums. First, the x are sorted by order
of increasing magnitude. Then X + x2 is formed, and the sum is inserted into the list
x2,..., x,, maintaining the increasing order. The process is repeated recursively until
the final sum is obtained. The motivation given in [35] for this strategy is that it tends to
encourage the additions to be between numbers of similar magnitude. It can be argued
that such additions are to be preferred, because they retain more of the information in
the addends (by comparison, "large" plus "small" may lose many significant digits from
"small"). A more convincing explanation of the insertion strategy is that it attempts to
minimize, one at a time, the absolute values of the terms T,+I,..., T2,_1 in the error
expression (3.3). Indeed, if the x are all positive the insertion method minimizes the
bound (3.4) over all methods of the form (3.1).

In particular cases the insertion method reduces to earlier methods. For example, if
x 2, the insertion method is equivalent to recursive summation, since the insertion
is always to the bottom of the list:

1248 ---* 348 --* 78 15.

On the other hand, if I < Xl < x2 < < xn < 2, every insertion is to the end of the
list, and the method is equivalent to pairwise summation if n is a power of 2; for example,
if0<e< 7,

1, l+e, 1+2e, 1+3e ---, 1+2e, 1+3e, 2+e ---, 2+e, 2+5e 4+6e.

The next method we consider is the one used in [24], as quoted in the Introduc-
tion. This method can be derived by the following specious reasoning: ’Yk major source
of inaccuracy in floating point summation is cancellation when numbers of nearly equal
magnitude and opposite sign are added. To minimize the amount of cancellation we can
accumulate the sum of the positive numbers, S+, and the sum of the negative numbers,
S_, separately, and then form S, S+ + S_." There are two flaws in this argument.
First, this "+/-" method does not reduce the amount of cancellation--it simply concen-
trates all the cancellation into one step. Second, cancellation is not a bad thing per se;
the problem with cancellation is that it brings into prominence any loss of significant dig-
its suffered earlier in the calculation (and it also brings into prominence any uncertainty
in the data). Indeed, nearly equal floating point numbers are always subtracted exactly
(assuming the presence of a guard digit)--it is any (relative) uncertainty in those num-
bers that is magnified. For an excellent and more detailed discussion of cancellation, we
refer the reader to [34, pp. 25-29].

The +/- method is of the form (3.1) (assuming that S+ and S_ are computed using
one of the methods discussed so far) and it is easy to see that it maximizes maxk ITI over
all methods of this form. Moreover, wheni IXi[ Zin--_l Xil the value of maxk ITkl
tends to be much larger for the +/- method than for the other methods we have con-
sidered. For example, if n 2rn and the xi are the values {-1, 1,-2, 2,...,-m, rn}
then

m

IS+l- IS-I- IT2 -21- k- m(m + 1)/2,
i--1

whereas for recursive summation with the increasing ordering, ITkl < rn for all k. De-
spite this weakness, if S+ and S_ are computed by recursive summation with the increas-
ing ordering then the +/- method satisfies a bound very similar to (2.5): if

Xp

__
Xp--1

__ __
X < 0

__
Xp+ -- __

Xn
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then it is straightforward to derive the bound

(3.8) -< I ,1 + I ,l + 1 u
i=1 i=p+l

In summary, the +/- method appears to have no advantages over the other methods
considered here, and in cases where there is heavy cancellation in the sum it can be
expected to be the least accurate method.

The final method that we examine has an interesting background. In 1951, Gill
[8] noticed that the rounding error in the sum of two numbers could be estimated by
subtracting one of the numbers from the sum, and he made use of this estimate in a
Runge-Kutta code in a program library for the EDSAC computer. Gill’s estimate is
valid for fixed point arithmetic only. Kahan [16] and Mller [31] both extended the
idea to floating point arithmetic. Mller shows how to estimate a + b fl(a + b) in
chopped arithmetic, while Kahan uses a slightly simpler estimate to derive a "compen-
sated summation" method for computing =1 z. The use of Kahan’s method with a
Runge-Kutta formula is described in [41] (see also the experiments in [26]).

The estimate used by Kahan is perhaps best explained with the aid of a diagram. Let
a and b be floating point numbers with lal _> Ibl, let " fl(a + b), and consider Fig. 3.1,
which uses boxes to represent the mantissas of a and b. The figure suggests that if we
evaluate

e=-[((a+b)-a)-b] =(a-’)+b

in floating point arithmetic, in the order indicated by the parentheses, then the computed

" will be a good estimate of the error (a + b) . In fact, for rounded floating point
arithmetic in base 2, we have

(3.9) a + b + ’,

that is, the computed ’represents the error exactly. This result (which does not hold for
all bases) is proved by Dekker [5, Thm. 4.7], Knuth [22, Thm. C, p. 221], and Linnainmaa
[26, Thm. 3]. Note that there is no point in computing fl(’g + ), since is already the
best floating point representation of a + b!

a al ]
+b

-a

a2

b b2

a2 + b
b 0

-b -b2 0 -e

FIG. 3.1. Recovering the rounding error.

Kahan’s compensated summation method employs the correction e on every step
of a recursive summation. After each partial sum is formed, the correction is computed
and immediately added to the next term z before that term is added to the partial sum.
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Thus the idea is to capture the rounding errors and feed them back into the summation.
The method may be written as follows.

s=0;e=0
for/= l:n

temp s
y= x +e
s temp + y
e (temp s) + y

end

The compensated summation method has two weaknesses: " is not necessarily the
exact correction, since (3.9) is based on the assumption that lal > Ibl, and the addition
y x + e is not performed exactly. Nevertheless, the use of the corrections brings a
benefit in the form of an improved error bound. Knuth [22, Ex. 19, pp. 229, 572-573]
shows that the computed sum S, satisfies

(3.10) g, E(1 + #,)xi, I#i[-< 2u + O(nuZ),
i=1

which is an almost ideal backward error result (a more detailed version of Knuth’s proof
is given in [9]).

In [17] and [18], Kahan describes a variation of compensated summation in which
the final sum is also corrected (thus "s s +e" is appended to the algorithm above). Ka-
han states in [17] and proves in [18] that (3.10) holds with the stronger bound ]#i[ < 2u+
O((n i + 1)u9); note that with this bound for [#i[, (3.10) is essentially (2.3) with the
n dependency transferred from the u term to the uz term. The proofs of (3.10) given by
Knuth and Kahan are similar, and involve a subtle induction using the model (1.2).

The forward error bound corresponding to (3.10) is

(3.11)
i=1

As long as nu < 1, the constant in this bound is independent of n, and so the bound
is a significant improvement over the bounds (2,6) for recursive summation and (3.6)
for pairwise summation. Note, however, that if Y.= Ixl >> Ixl, compensated
summation is not guaranteed to yield a small relative error.

Another version of compensated summation is described in [14], [15], [21], [32], and
[33]. Here, instead of immediately feeding each correction back into the summation, the
corrections are accumulated by recursive summation and then the global correction is
added to the computed sum. For this version of compensated summation it is shown in
[21] and [32] that

(3.12) , E(1 + #i)xi, I#il < 2u + n=u,
i=1

provided nu < 0.1; this is weaker than (3.10) in that the second-order term has an extra
factor n. If nZu < 0.1 then in (3.12), ]#1 < 2.1u. In [14], it is shown that by using
a divide and conquer implementation of compensated summation the range of n for
which [#il < cu holds in (3.12) can be extended, at the cost of a slight increase in the size
of the constant
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Finally, we mention briefly two further classes of algorithms. The first builds the
sum in a series of accumulators, which are themselves added to give the sum. As origi-
nally described in [44], each accumulator holds a partial sum lying in a different interval.
Each term z is added to the lowest level accumulator; if that accumulator overflows it
is added to the next higher one and then reset to zero, and this cascade continues until
no overflow occurs. Modifications of Wolfe’s algorithm are presented in [28] and [36].
Malcolm [28] gives a detailed error analysis to show that his method achieves a relative
error of order u. A drawback of the algorithm is that it is strongly machine dependent.
An interesting and crucial feature of Malcolm’s algorithm is that on the final step the ac-
cumulators are summed by recursive summation in order of decreasing absolute value,
which in this particular situation precludes severe loss of significant digits and guarantees
a small relative error.

Another class of algorithms, referred to as "distillation algorithms" by Kahan [19], it-

eratively constructs floating point numbers xk),..., x(k) such that iL1 Xk) ElL1 Xi,

terminating when x() approximates i1 xi with relative error at most u. Kahan states
that these algorithms appear to have average run times of order at least n log n. See [3],
[19], [25] and [23] for further details and references.

4. Statistical estimates of accuracy. As we have noted, rounding error bounds can
be very pessimistic, because they account for the worst-case propagation of errors. An
alternative way to compare summation methods is through statistical estimates of the
error, which may be more representative of the average case. A statistical analysis of
three summation methods has been given by Robertazzi and Schwartz [35] for the case
of nonnegative x. They assume that the relative errors in floating point addition are
statistically independent and have zero mean and finite variance a2. Two distributions
of nonnegative x are considered: the uniform distribution on [0, 2#], and the exponen-
tial distribution with mean #. Making various simplifying assumptions Robertazzi and
Schwartz estimate the mean square error (that is, the variance of the absolute error) of
the computed sums from recursive summation with random, increasing, and decreasing
orderings, and from insertion summation and pairwise summation. Their results for the
summation of n numbers are given in Table 4.1.

TABLE 4.1
Mean square errors.

Distribution

Unif(0, 2/)
Exp(/)

Increasing Random Decreasing Insertion Pairwise

0.202n3tr2 0.33/z2n3cr2 0.532n3tr2 2.6/,2n2tr2 2.7/z2n2tr2
0.13/z2n3a2 0.33/2n3a2 0.63/z2n3tr2 2.6/2n2tr2 4.0/z2n2cr2

The results show that for recursive summation the ordering affects only the constant
in the mean square error, with the increasing ordering having the smallest constant and
the decreasing ordering the largest; since the z are nonnegative, this is precisely the
ranking given by the rounding error bound (2.8). The insertion and pairwise summa-
tion methods have mean square errors proportional to n rather than n for recursive
summation, and the insertion method has a smaller constant than pairwise summation.
This is also consistent with the rounding error analysis, in which for nonnegative z the
insertion method satisfies an error bound no larger than pairwise summation, and the
latter method has an error bound with a smaller constant than for recursive summation
(log2 n versus n).
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5. No guard digit model. The model (1.2) on which our error analysis is based is
not valid on machines that lack a guard digit in addition, notable examples ofwhich are
Cray computers. On Cray computers, subtracting any power of 2 from the next smaller
floating point number gives an answer that is either a factor of 2 too large or is zero, so
the expression fl(c +V) (z +U)(1 +6) holds with }61 i but not with 161 o() [20].
For machines without a guard digit we have to use the weaker model [43, p. 12]

(5.1) fl(x + y) x(1 + a) + y(1 + ), la[, I1 .
We now summarize the effect on the rounding error analysis of using (5.1) in place

of (1.2). The equality (2.4) remains valid provided we replace (xl +x2)0_1 by xl0_ +
x20_; so (2.5) and (2.6) are unchanged. The error expression (2.7) has to be re-
placed by

(5.2) En -(k-lOk + Xiflk), [Ok[, IZI ,
and so the analog of (2.8) is

(5.3) I1 z(1-11 + I1),

which is bounded above by 3z= + Notice that (5.3) contains the term

S z, which is not present in (2.8). The error expression (3.3) has to be replaced
by an expression analogous to (5.2), and in (3.5) the factor n 1 has to be replaced
by n. The bound (3.6) for pairwise summation remains valid under the no guard digit
model, while in the bound (3.8) for the +/- method we have to replace z/(1
by (IS"+ + IS"-I), which is bounded by u E,I Iz, + O(u)

Neither the correction formula (3.9) nor the result (3.10) for compensated summa-
tion holds under the no guard digit model. Indeed, Kahan [20] constructs an example
where compensated summation fails to achieve (3.11) on Cray machines, but he states
that such failure is extremely rare. In [17] and [18], Kahan gives a modification of the
compensated summation algorithm in which the assignment "e (temp s) + U" is
replaced by

f=0
if sign(temp) sign(u), f (0.46 s s) + s, end
e ((temp- f) (s f)) + U

Kahan shows in [18] that the modified algorithm achieves (3.10) "on all North American
machines with floating hardware" and explains that, "the mysterious constant 0.46, which
could perhaps be any number between 0.25 and 0.50, and the fact that the proof requires
a consideration ofknown machines designs, indicate that this algorithm is not an advance
in computer science."

Ii. Numerical experiments. In this section we describe some numerical experiments
that give further insight into the accuracy of summation methods. All the experiments
were done using MATLAB [30], which uses IEEE standard double precision arithmetic
with unit roundoff z 1.1 10-6.

First, we illustrate the behavior of the methods on four classes of data {zi} cho-
sen a priori. In these tests we simulated single precision arithmetic of unit roundoff
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l,Sp 2-23 1.2 x 10-7 by rounding the result of every arithmetic operation to 23
significant bits. We formed an approximation to the exact answer Sn by summing the
single precision numbers zi in double precision by recursive summation; in each case
nz Y’il [xi[ < zsplSn[, so (2.6) guarantees that this approximation is correct to single
precision. We give results for recursive summation with the original (Orig.), increasing
(Inc.), decreasing (Dec.), and Psum orderings, and for the insertion (Ins.) method, the
+/- method (with S+ and S_ computed by recursive summation with the increasing
ordering), pairwise summation with the increasing ordering (Pair.), and compensated
summation (Comp.).

The numbers reported are the relative error S, S,I/[S I, together with infor-
mation that indicates the sharpness of the bounds. In square brackets is the value T
y2,-1 [k[ in (3.4), for all methods except compensated summation. In parenthesesk=nq-1

is the ratio R ]Sn Snl/(usf -i=1 Ix, l), which, according to the error analyses, is
certainly bounded (to first order) by n for recursive summation and the insertion and
+/- methods, log2 n for pail-wise summation, and 2 for compensated summation. The
quantities T and R reveal how close the strongest and weakest of the error bounds are
to being equalities.

(1) In the first example, xi is the ith term in the Taylor series expansion of e-x about
the origin, with x 27r (this series provides the classic example of "catastrophic can-
cellation" [37]). Results for n 64 are given in Table 6.1. In this example, recursive
summation with the decreasing ordering yields by far the best accuracy. There is severe
cancellation in the sum and the decreasing ordering allows the terms of smallest mod-
ulus to contribute fully to the computed sum; in the other methods the small terms are
"swamped" by the large terms. The error bounds do not reflect the merit of the decreas-
ing ordering, because the T terms (in square brackets in the table) are of similar mag-
nitude for the first four methods. Note also that compensated summation produces no
improvement over recursive summation with the original ordering, and the +/- method
yields one less correct significant figure than all the other methods (as predicted by the
T values).

TABLE 6.1
a:from e-r expansion. -= xl/i= I1 a.48e ,

n Orig. Inc. Dec. Psum Pair. Ins. //- Comp.

64 5.11e-45.11e-4 2.27e-3 1.85e-7 2.27e-3 1.41e-4 2.27e-3 1.86e-2
[2.68e2 2.97e2 2.97e2 2.85e2 8.68el 2.97e2 1.34e3]
(1.49e-2 6.64e-2 5.40e-6 6.64e-2 4.13e-3 6.64e-2 5.44e-1 1.49e-2)

(2) In this example the zi are random numbers from the Normal(0,1) distribution
and we report the results for n 2048 and 4096 in Table 6.2. There is cancellation in
both sums, although not as much as in the first example. Here the Psum ordering is
clearly the best and the //- ordering the worst, and this is reflected in the T values.

The next two tests involve positive z, for which all the methods are guaranteed to
produce a relative error no larger than f(n)u, where f(n) < n depends on the method.
(Note that for positive z, "Psum =_ +/- Inc.")

(3) We take zi 1/i:t and examine how the errors vary with n for recursive summa-
tion with the decreasing and increasing orderings. Results for n 500, 1000,..., 5000
are given in Table 6.3. As would be expected in view of the error bounds of 2, the de-
creasing ordering provides much lower accuracy than the increasing ordering when n is
large.
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TABLE 6.2

from Normal (0,1)disbution. Yi--1 x,il/Y]i- Ix’il-- 8.08e- 3(n 2048), 3.48e- 3(n 4096).

n Orig. Inc. Dec. Psum Pair. Ins. +/- Comp.

2048 2.28e-7

4096

7.47e-6 3.32e-6 7.17e-6 6.82e-8 6.60e-7 5.12e-7 1.20e-4
[3.06e4 1.53e4 2.65e4 8.26e2 2.87e3 2.32e3 4.80e5]
(5.06e-1 2.25e-1 4.86e-1 4.62e-3 4.47e-2 3.47e-2 8.15e0
8.06e-6 1.04e-5 1.84e-6 2.66e-8 1.38e-7 6.87e-7 3.68e-4
[6.69e4 4.74e4 4.28e4 1.68e3 5.70e3 5.38e3 2.02e6]

(2.35e--1 3.04e-1 5.38e-2 7.76e-4 4.04e-3 2.00e-2 1.07el

1.54e-2)
1.92e-7

5.59e-3)

Inc.
Dec.

TABLE 6.3
xi 1/i2.

500 1000 2000 3000 4000 5000

1.04e-7 1.01e-7 1.74e-8 5.22e-8 1.36e-7 3.90e-8
3.31e-7 6.24e-7 5.64e-6 2.30e-5 2.77e-5 5.81e-5

(4) In this example the numbers xi are equally spaced on [1, 2]. We tried various
n < 4096 and did not observe a great difference between the increasing and decreas-
ing orderings; this is to be expected since the xi vary little in magnitude. For the fairly
large n in Table 6.4 pairwise summation out-performs recursive summation (the insertion
method is equivalent to pairwise summation in this example). The errors for compen-
sated summation are zero for all the n we tried!

TABLE 6.4
equispaced on [1, 2].

n Inc. Dec. Pair. Comp.

2048 0.00

4096

2.86e-6 3.86e-5 1.59e-7
[2.80e6 3.50e6 3.38e4]
(2.40e 3.24e2 1.33e0 0.00)
3.35e-5 2.18e-5 1.59e-7 0.00
[1.12e7 1.40e7 7.37e4]
(2.81e2 1.83e2 1.33e0 0.00)

In the next set of tests we used a MATLAB implementation [12] of the multi-
directional search (MDS) method [39], [40] which attempts to locate a maximizer of
f IR’ ]R using function values only. We applied the maximizer to f defined as the
relative error of the sum computed in single precision by recursive summation with the

2 1] the maximizer located theincreasing ordering. With n 3, starting with x0 [1/2, g,
following set of data after 280 function evaluations:

x [4.975987 2.495094 2.480894], f(x) 1.0,

3 -9.5367 x 10-7, $3 -4.7684 x 10-7,

where x and the Sa values are quoted to seven and five significant figures, respectively.
With f defined as the relative error for compensated summation, the MDS maximizer

2made little progress with the same starting value. But starting with x0 [-g, 0, g], the
maximizer found after 166 function evaluations the data

x--[-0.8308306
$3 2.3842 X 10-7,

0.7626623 1.593493],
$3 1.1921 10-7.

f(x)-- 1.0,
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(If z is reordered with the increasing ordering then f(z) 1.0, but f(z) 0 for the
decreasing ordering.)

These two examples are typical--using the maximizer it is straightforward to find
data for which any of the summation methods yields no correct significant figures in the
sum. The maximizer can also be used to compare two different methods, by defining f
as the ratio of the errors from the two methods. With n 3 we compared recursive sum-
mation (with the increasing ordering) with compensated summation. For both ratios of
errors (E(Inc.)/E(Comp.) and its reciprocal) with certain starting values the maximizer
was able to make the ratio arbitrarily large, by converging to data for which the error
forming the denominator of f is zero. We observed similar behavior when comparing
other methods.

Next, we describe an experiment with the forward substitution algorithm for solv-
ing a lower triangular system. We coded the inner product version of the algorithm and
provided an option to choose between eight summation methods when evaluating the
inner products. (The column-oriented form of forward substitution is not amenable to
the use of different summation methods.) Lower triangular systems Tx b were solved
in single precision and the forward error I1- zll/llzll was evaluated for each of the
eight summation options. We give results for T UT where PA LU is the LU fac-
torization with partial pivoting of the 10 x 10 Vandermonde matrix whose (i, j) element
is ((j 1)/(n 1))i-1. In Table 6.5 we report results for the two systems with right-
hand sides b Tz, where x has elements equally spaced on the intervals [1,100] for

1 and [0, 100] for 2. For this matrix o(T) IITIIIIT-XlI 3 107, and
cond(T, xx) cond(T, x2) 7 x 105, where cond(T,x) IT-111TIIzl II/llxll _<

(T) is the condition number that appears in a forward error bound for the substitu-
tion algorithm [11]. The forward error varies over the different summation methods by a
factor 98 for bl and a factor 39 for b2; these are the largest variations we observed in tests
with a variety of different matrices and right-hand sides. Throughout the tests there was
no pattern to which summation method led to the smallest or largest forward error. This
experiment shows that the choice ofsummation method for inner product evaluation can
significantly affect the accuracy achieved by forward substitution, and this conclusion ap-
plies afortiori to the solution of a full system via LU factorization. However, since there
appears to be no straightforward way to predict which summation method will be the
best for a given linear system, there is little reason to use anything other than recursive
summation in the natural order when evaluating inner products within a general linear
equation solver.

TABLE 6.5
Forward substitution with a 10 x 10 matrix.

Orig. Inc. Dec. Psum Pair. Ins. +/- Comp.

bl 3.01e-4 1.18e-2 7.70e-3 1.18e-2 2.94e-2 1.18e-2 4.01e-3 7.70e-3
bg. 1.31e-2 2.64e-2 4.63e-3 2.64e-2 6.81e-4 1.06e-2 2.64e-2 2.04e-2

We have also experimented with compensated summation with the data arranged
in order of decreasing magnitude. For all the problems we have tried, including those
described above, the relative errors are < usp. Our attempts to use the MDS maximizer
to find a set of x for which the relative error exceeds usp have been unsuccessful. It is
therefore natural to ask whether a relative error bound of the form _< can
be derived, where c is a constant independent ofthe x. The answer is no, because E, can
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can be nonzerowhen S, 0. Evenwhen n 3 and Sn 4 0 it appears to be impossible to
obtain such a bound. Nevertheless, our (limited) experience suggests that compensated
summation with the decreasing ordering performs remarkably well in practice, and it
would be interesting to determine why this is so.

Further test results can be found in the literature, although none are extensive. Linz
[27] compares recursive summation with pairwise summation for uniform random num-
bers on [0, 1] with n 2048, averaging the errors over 20 trials, and Caprani [4] and Gre-
gory [10] both conduct a similar experiment including compensated summation as well.
Linnainmaa [26] applies recursive summation and compensated summation to series ex-
pansions, Simpson’s rule for quadrature and Gill’s Runge-Kutta method. Robertazzi
and Schwartz [35] evaluate average mean square errors for recursive summation (with
increasing, decreasing, and random orderings), pairwise summation and the insertion
method, for the uniform [0, 1] and exponential (/z 0.5) distributions with n < 4096.

7. Concluding remarks. No summation method from among those considered here
can be regarded as superior to the rest from the point ofview of accuracy, since for each
method the error can vary greatly with the data, within the freedom afforded by the error
bounds. However, some specific conclusions can be drawn.

1. For all but two of the methods the errors are, in the worst case, proportional
to n. If n is very large, pairwise summation (error constant log n) and compensated
summation (error constant of order 1) are attractive.

2. If the all have the same sign, then all the methods yield a relative error of at
most nu, and compensated summation guarantees perfect relative accuracy (as long as
nu < 1). For recursive summation of one-signed data the increasing ordering is prefer-
able to the decreasing ordering (and it is equivalent to the Psum ordering); however,
the insertion method has the smallest bound (3.4) over all the methods considered here
(excluding compensated summation).

3. For sums with heavy cancellation (=1 Irl >> ’1 zl) recursive summation
with the decreasing ordering is attractive (see Table 6.1), although it cannot be guaran-
teed to achieve the best accuracy (see Table 6.2).

Considerations of computational cost and the way in which the data are generated
may rule out some of the methods. Recursive summation in the natural order, pair-
wise summation, and compensated summation can be implemented in O(n) operations
for general z, but the other methods are more expensive since they require searching
or sorting. Furthermore, in an application such as the numerical solution of ordinary
differential equations where the z are generated sequentially, and zk may depend on

k-1)-=1 zi, sorting and searching may be impossible. One way to achieve higher accuracy
that we have not mentioned is simply to implement recursive summation in higher pre-
cision; if this is feasible, it may be less expensive (and more accurate) than using one of
the alternative methods in working precision.

Finally, we return to the two practical applications mentioned in the introduction.
In [24], the +/- method was found to cure some problems with inaccurate gradients in
an optimization method. This is a little surprising since we have found the +/- method
to be unattractive. It appears that there is some feature of this application, not apparent
from [24], that encourages the +/- method to perform better than recursive summation
with the natural ordering. The loss of symmetry in a quasi-Newton method that was
observed in [7] is easier to understand. For example, symmetries in F in (1.1) can be
preserved by using any summation method whose computed answer does not depend on
the given order of the data--such as recursive summation with the increasing ordering
and with elements of equal magnitude ordered by sign.
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