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ABSTRACT 

The nearest symmetric positive senidefbite matrix in the Frobenius norm to an 

arbitrary real matrix A is shown to be (B + H)/2, where H is the symmetric p&r 
factor of B = (A + AT)/% In the e-norm a nearest symmetric positive semidefinite 
matrix, and its distance &s(A) from A, are given by a cc$mputationaUy &akuging 
formuia due to Halmos. We show how the bisection method can be applied to this 
bml.4a to compute upper and lower bout& for 8s(A) d&ring by no more tk a 
given amount. A key @rexBent is a stable and efficient test for positive definiteness, 
based on an attempted Choleslci decomposition. For accurate computation of &(A) 
we fommlate the problem as one of zero fin&g aud apply a hybrid Newton-bisection 
algorithm. Some numerical diffkukes are dkussed and inustrated by example. 

1. INTRODUCTION 

Symmetric positive definiteness is aqgiably one of the highest mathemati- 
cal accolades to which a matrix can aspire. For symmetry confers important 
advantage md simplifications in the eigenproblem, and positive definitiness 
permits economy and numerical stability in the solution of linear systems. 
2%~ 2 is plea&g that in a wide variety of physica! probkms th appli@i~ 
of minimum principles gives rise to symmetric positive definite linear systems 
[I?]. But in some appk2ths a matrix ht is expected to be symm&rk 
positive (semi)definite fails to be so, and it is requhd to approximate it by a 
matrix that is. A well-known example occurs in 
indefhite Hessian in [lo]. 
[16], it is requhd t0 compensate for the errors of measurement, computation, 
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01; even typing, which could vitiate the symmetry or definiteness of a matrix. 
Some other problems with IKMMX c!efirdkc~ CXMIS~P&&S 8~e described in [8]. 

This work is concerned with the computation of nearest symmetric 
positivesemidedinite~~~toanarbitrary~inahee-nOnnanditfre 
F&enius norm. (we will use the abbreviation psd for “symmet& positive 
semidefinite.“) out work to the recent literature on matrix nearness 
problems [3,5, 13,14,20]. 

RI &&ion 2 we show that in the Frobenius norm there is aunique nearest 
~matrixtoA,whichcanbe~~intiermsofthepolrrrd~m~ti~ 
oftbesymmetricpartofA.Thisnearestmatrixis~y~mpu~usinga 
sin& spectral decomposition. 

In the 2norm there are, in general., many nearest psd matrices to A. 
Hamos [12] obtains one such matrix in terms of a convenient, though 
computationallychaUc@ng,formulaforitsd.istancefrom A. WeuseHalmos’~ 
formula to derive methods for estima&g and computing this matrix and its 
Znorm distance from A. 

~~‘s~tisstatedandexploredinsection3.Insectiorn4we 
develop a bkction algorithm, similar to that in [3], for computing upper and 
lower bounds on the 2=norm distance to the nearest psd matrix. To imple- 
ment the algorithm we need an effkient and numerically stable method for 
testing whether a given qmmetric matrix is positive definite. We show in 
Section 5 that an attmpted Chokski factorkation has the mquired proper- 
ties, and we investigate a “reverse pivoting” implementation that attempts to 
reduce the cost. 

In Section 6 we consider the use of a hybrid bisection Newton iteration 
for computing the distance to high accuracy. Section 7 presents some 
ilIustrativenumeri~exam~ 

Our notation is as follows. Ah matrices are assumed real (there is no 
difficulty in extending afl the results du1I1 algorithms to the complex case). We 
use the Snorm, 

where the spectral radius p(B)= max{lhl:det(B- XI)= 0), and the 
Frobenius norm 

Recall that a symmetric matrix A is positive definite if its eigenvalues are 
positive, and positive semidefinite, which we will denote by A 2 0, if its 



which gives an uppr bound cllAll on the abdute ermr. Writing (1.1) in 
terms ob the scale iudependent quantity $(A)/ljAJI Q 1, we have, for 6(A) # 0, 

8 W) 
m-llAll 

iNA) 

llAll 

The folkmhg result gives the solution to the pddem of positive ap- 
proxima&n kn the Frobenius norm. The result to be new. 

T- 2.1. -, und let B=(A+AT)/2 
(A -AT)/2 be the hwqnw&&g~ntsofA 
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&3tB=UH~i2polm~ti(UTU==I, H=HT>,@).2%enX,= 
(B + FE),/2 is the unique positiw tzppmdmti of A in the Fmbenius mmz, 
and 

IkqC Let X -be psd. Fmm the fact that IIS + Klli- I[!# + llKllt if 
S=STand K= -KT,wehave 

IlA - X1$ ‘- ;;B - XII; + IlCll$, 

and so the problem reduces to that of approximating B. Let B= ZAZT 
[ZTZ= I, A =diag(X,)] be a spectral decomposition, and let Y = ZTXZ. 
Then 

llB - XII; = 1111 - VI; 

= Z Y$+ c(xi-Yid)s 

i#j t 

since yir 2 0 because Y is psd. This lower bound is attained, uniquely, for the 
mati Y z ~~dj), where 

di= ot’ ( A. x,20, 
9 Xj<O, 

@=l) 

that is, 

x,= z&g(a,)zT. (2-a) 

The representation X ,-(B+~)/efo~~~,sinceH=ZdiagQIXi~ZT. l 

Computation of the positive approximant X, = (B + H)/2 is stmightfor- 
ward. 3%~ gr~f5~red app is to compute a spectral decomposition of B 
and to form X, according to (2.1) and (2.2). Au alternative, when B is 
nonsinguk, is to compute N using the iterative algorithm of [13], which is 
based ou matrix inversions. 



IWmos [IZ] proves the following re~uk, in the more genepl cx~ntext of 
linear operators on a Hibert spiwe. 

TEIEDREM 3.1. For A E 

where B=(A+AT)/2 t& C=(A-AT)/2 are the sgrnmtk and skew- 
- parts of A rqzechely. The muth 

P = B + [$(A)? + C”]lB (3.2) 

The importance of Halmc& result is that it replaces the problem of 
minimhhg over the set of n x n psd matrices by the much simpler problem 
of minimihg over the nonnegative scalars. 

It should be stressed that a 2norm positive approximant of A is not in 
general unique. To see this, note that B = (A c AT)/2 is a nearest symmetric 
matrix to A in the %norm [7]. If I3 is psd, then clearly it must also be a 
positive appeant for A; but if C2 is not a multiple of the identief, tSern B 
differ from the positive approximant given by (3.2). For e&s on the 
uitiqueness of positive appnximants see [I, 2, 121. 

We now examine some properties of the matrix 

which occurs in (3.1). The eigenvalues of r’1 + Cs are re - lX,(C)12Y since 
X,(C)EiRbecauseofC’sskew4ymmetry.Thustheconditionr2I+C2~O 
in (3.1) is equivalent to I > p(C). The next two results, combined with 
Theorem 3.1, form the basis for the numerical methods to be in 
Ee@ious 4 and 6 

LEMMA 3.2. &JG(r)) is a stddy munotone jhction of r (r 2 p(C)). 
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We have 

G(r+Sr)-G(r)= [(r+&)21+C2]"2-(r21+C2)1/8 

=D-‘[(r+6r)2 ] - r2 I = (2rSr + Gr2)D-1, 

using the fact that the two matrices whose sum is D commute. Thus 
G(r + 6r) -G(r) is positive definite, which implies that h,,,JG(r + Er)) - 
X&(G(r)) > 0, as requirei< q 

COROIURY 3.3. Suppe G(p(C)) is not posit&e semidefinise. Hen 
tht~ is Q dq~ I* > p(C) &r which G(t*j is pitiue semidefinite ad 
singdur. For r > I*, G(r) is positfoe d@ai&, ad j;, I < I*, G(r) bus at 
btlst me negative &gtmtllue. 

Thenextresultshowsthatfrom~estimaterforr*=68(A)~obtaina 
matrix G(r) whose distance from A is correspon~y close to the mini- 
mum, &(A). 

LEMMA 3.4. l[A - G(r)li2 = r (r 3 p(c))= 

Proof: 

= r. n 

Finally we consider the role of the Frobenius noxm positive appmximant 
in approximatiox~ in the 2-norm. When A is normal (that is AAT = ATA), 
X, = (B + W)/2 is actually a Znonn positive approximant of A. This is 
sh~wrr by Halm~ [IS]- Note, however, that X, is generally different from P 
in (3.2). For arkrary A we can show that X, is an approximate minimber of 
&e &norm distant llA - XllP 

LEMMA 3.5. &(A) 6 IlA - XFl12 < 28,(A). 
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IXe lower is trivial. For the upper~boand, 

IlA - &llo = IlC + :(a - H) IIs 6 IlClle + illB - We 

=p(c)*=(o, -&&Q), 

since B-H=Zdiag(X,-IX,~Zr, Z*Z=I(seetheproofof Theomn2.1). 
We have p(G) < &da). Also 

since Ce has negative eige~values; thus 

4. A BISECTION METHOD FOR ESTIMATING SAA) 

~~tinspecialcases(suchas~nAisnonnal)~~isno~tw~y 
to compute i&(A) from (3.I), “because the eigemalues of G(r) = B + ( rel + 
CB)lfl 8z5 nonlinear functio~~s of r. Therefore we turn to iterative methods. 
~e~~~tPlis~ontbat88(A)istobeestlmated~modestaccuracy. 

Suppose G(p(C)) is not positive SemidRfioife [if it is, then &(A) = P(C)& 
Corollary 3.3 suggests the follow@ bisection app&. Find an interval 
[a,@] containing P =&(A). If G(y) is positive definite9 where y = 
(a+ jQ/2, accept the interval [a, yj containing r*; othawise accept [y,Bl* 
Repeat the promo u& the desired accmacy is obtained. 

A suitable convergence test is (since 0 < u < j3) 

wherefclisa 
whichtalceseffect 
pllAllF, where cc should be 

choice for to1 is 
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The cost of faming C(y) at each stage can be reduced mnsiderably by 
making use of a spectral d-position of Ce. If 

ce = znz=, z=z=1, A=diag(A,), 

then 

c( 2) = B + z( rBI + nyz= 
-Z[Z=Bz+(r~~+h)“s]Z=, 

and it suffices to form and test for positive definitena the matrix fi + (rs1 + 
A)‘? where s = ZTBZ, and whe!re the square root is trivial to compute. 

An initial kterval contaiuing P is given by the bounds 

where 

M=max(O, -X*(B)). 

The upper bound is from the proof of Lemma 3.5, and the second lower 
bound follows from the fact that a psd matrix has nonnegative diagonal 
elements. These bounds differ by no moxe than a factor 2, and they are exact 
when A is symmtic (since C= 0). We mention that computation of 
X&(B) could be avoided by using the altemative, but pote&ially much 
weaker, upper bound jfA]l,. 

hlput: AEIPX”, a relative error tolerance f< 1, and an absolute error 
tolerance! tol. 

Output: a,~sOedW 

andapsdmatrix Xsuch&at [lA-X(ls=/3. 

1. B := (A + A=)/Z; C := (A - A=)/Z. 
2. cz = Zh Z T (s_pectd decomposition). 
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3. B := Z=BZ. 
4. Form an interval [a, j?] bracketing &s(A) using (4.2). 
5. IfB+(as~+A)‘/BiS~SetB:=aand~~step7. ,_ 
6. While (#I - a)/2 > max{ fqtol) .i_ 

P := (a + /3)/2, 
G = B +($l + A>l/z, 
ifGispsdthen~=dsea=r. 

7. x := Z[B +{/!?sI -t A)qE?: 

Thetestin~p5~n~~tIrecraseswh~thelowerboundiserractand 
hence sectioning is unnv. 

Algorithm nsr works entirely in reai arithmetic. In step 2 one can either 
form C2 explicitly and apply a symmetric eigensolver, or ccmpute a real 
Schur decomposition C=2DZT (preferably using a routine that takes ad- 
vantage of skewmetry) and take A=Ds. The former approach is 
numeri4y stable, since ]]C]]% = ]lC2]iP 

A remainhg question is how to test the definiteness of G in the iteration 
ofstep6.Thisisconsideredinthenextsecticn. 

5. TESTING MIR POSITiVEi DEFINKENESS 

In Algorithm EsT.we require a methcd for determining whether a given 
symmetric matrix G is positive semidefinite. The method should be efficient 
and numericaNy stable. By the lMter we mean that the answer, “yes” or 
%Q” shculd be the correct answer for a nearby symmetric matrix 

where E is a small multiple of the machine precisicn Since with an arbitrarily 
small pertmbatb a semMinite matrix can ‘become definite, it follows that 
in finite pm&ion arithmetic testing for definiteness is equivalent to test@ 
for semidefiniteness. We will adopt the vieWpoint of testing for strict 
d@$inzxSM. 

One approach is to compute the eigenvalues of G, using the symmetric 
Qi algorithm Ill, p. 2gl], and to check if the smallest computed eigenvahre 
is positive. This approach is certainly numerically stable, since the computed 
eigenvalues are these cf a nes!&y matrix [11, p. 2321. The cost is abut %Q3 
Bcps. 

A hss expensive apprcach is to attempt to compute a 
position of G, &&ring the matrix positive definite if the 
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that is, if no zero or negative pivots are! encountered, and not positive definite 
otherwise. The cost is at most n3/S flops, and depends on the number of 
successfiJ eliminaw stages. This Ch&ski approach is related to technims 
to be found in [l?, p. 461, where LIX? factorbtions are used to compute 
tire itktia of a symmetric matrix, and in [4], where the inertia of a symmeth 
Toeplitz matrix is computed using the IAnson-Dlrrbin algorithm. 

Tbestability,~o~e~,~tbeC~definitenesstestdaesnotseem 
obvious. Indeed, at first *t it is not clear why instsbility cannot conk&e to 
allow Choleski factorization of a “safely” indefinite matrix to SIXXBXL To 
invest&& the stability we turn to the classical error analysis for the Ch&slci 
decomposition. 

uT=G+E, II% G d#llGII,* 8 (5.1) 

Theoem 5.1 immediably yields 3ne half of the quired stability result. 
ForifCholesldfactorizationofG~down,thenGcaanotbeposi~~ 
definite with ~JG)c,tl < 1 as this would contradict part (a). Thus either G is 
not positive definite or it is positive definite with K&)c,,u > 1. In the kter 
case ‘G is within !&norm distance c,ullGl12 of a singular, symmetric matrix, 
and the answer “not positive definite” is therefore the correct one for a 
matrix close to G. 

Considering now the “po&ive definite” answer, we note that Theorem 
5.1 apparently is not applicable to genesal symmetric matrices G. However, 
~~naf~proafsin[l5,~l]~thatthe~e~result 
(5.1) bkls without any assumption on the definiteness of G-it requires only 
that the algorithm M to completion. It follows from (5.1) that if Choleski 
factorization of a symmea+ matrix G succsds, then G is near to a positive 
definite mats& n~~~1y IAT. 

We con&de that the Choleski positive definiteness test is numerically 
stable. 



6. ACXNRATE DIRERhUN ATION OF $(A) 

If~A)is~ape~~to~y~~tfigures,thenitisdesIrable 
to use a method that converges rnc~re rapidly t&n Algorithm EST. To obtain 
such B .-method we assume i&(A)> p(C) and we uss Theorem 3.1, 
bmma 3.2, and Gxnlby a3 to reformulate the problem of computing 
8~A)asthatoffindingthetmique~ofthefunction 

G(r) = B .+ (d-i- C2>1/8. 

= rs(r)“(rSH + c”) - %(‘), (62) 



114 IWHOLAS J. HIGHAM 

where x(r) is an eigenvector corresponding to &&G(r)), normahued so that 
]]x(r)]]a = 1. We can thdm apply Newton’s method, suitably txmsbhd 
to &e interval [p(C),c~) zn which f is defined, We v+iU use a ‘Vail-&? 
hybrid Newt-n algodm, in which a bisection step is taken if th? 
Newton step either would leave the current bracket or would not pruduce a 
!5uffhiat aduction in the size of the bracket. 

There are several details concerning the implementation. 

(1) If A is normal, then X, is a 2norm positive approximant and both 
X, and $(A) may be computed from a single spectml decomposition, that of 
A (see Sections 2 and 3). This will be less expensive than the Newtoti- 
tion approach, and so normal matrices should ba treated as a spatial case. 

(2) An initial bracket can be obtained from (4.2). A speckal decomposi- 
tionafCshouldbeusedasinAlgorithmEsrtoreducethecostofevaluating 
Dnd$. 

(3) If LilLG( r )) is a repeated eigenvalue, then f is not differentiable at 
r; the expression in (6.2) exists, but it is not uniquely defined. F’inding the 
zero of f in (6.1) can be posed as a nonlinear inverse eigenvalue problem: 
Mii&iZ!e I subject to &(G(r))> 0 for all i. The behavior of Nswton’s 
method for solving linam inverse eigenvalue prnblems is investigated in [9]. 
It is shown that local Quadratic convergence is generally obtained, both in 
theory and in practice, even wh@n them are muitiple eigenvalues at the 
solution. It seems masom&le to expect this behavior to hold also for our 
nonlinear problem. In any case, the hybrid Newton-bise&on algorithm is 
guaranteed to converge, by construction, akit only linearly in the worst 
cake. A pleasing result in these mces is that the positive appuximant 
P=G(&(A)) has the minimum number of zero eigenvalues over all positive 
approximants of A. This follows from Theorem 4.2 in [l], which states that 
P-X&Oforany2-nonnpositiveapproximant Xof A. 

(4) Depending on the relative separation of r, p(C), and adA), the 
Nawton step may leave the range [p(C)& on which fir) is defined, 

abisectionsteptobetaken.Byconside&gthe ts=lcasa, At)= 
F+FP -C (r 3 ]cD, which represents the upper half of a parabola, it is 
easy to see that more steps may be mquired for convergence when &(A) = 
P(C)* 

(5) Since we are using a spectral decomposition of Cs, we work with 
G(r) in the form G(P) = fi + [ $I- diag(&)ilfl (see Section 4). For r 2: r*, 
when forming 

~RJS of Qgnificant figures will occur in the subtraction when re * p(C), and 
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may oeeur in the addition: for example when B is diagonal, so that [if G(r*) 
is not positive definite] &&G(P)) = g,,(r*) = 0 (some i). The aceumey of 
tile computti function and derivative values may be adversely deeted (see 
Example 5 in the next se&ion). Unfortunately there does not seem to be any 
way to avoid these losses of sign&ant figures~ but at feast they are easily 
detected. 

7. NUMJBICiLEXAMPLES 

We have implemented ~rithm EST, and the zero finding approach of 
section 8, in FoRTLuN 77 on a CDC Cyber computer with machine precision 
u=3.5!5X~O- ? We used the NAG Library spee tral decomposition routine 
we for all eigeneomputations. For zero finding by hybrid Newton-bisec- 
tion we used subroutine IITSAFG from [18], q&fying the stringent absolute 
error tolerance ujjAllP [see (l.l)J. An initial bra&et was obtained from (4.2). 
In Algorithm USA we to& f= 5X lo-“, and we tested for positive definite- 
uess using a reverse pivoting modification of LI[Mp~crc’s M [6] (see 8ec- 
tion 5). 

For each of the five examples presented we report in Table 1 the number 
of steps taken by Algorithm EST and by RTMFZ. We &KS show the sequence 
of steps taken by rrrs~~~, with “N” for Newton and “V for bisection, and 
the number of sueces&l stages for each attempted Chokski decomposition 
in Algorithm EST, specifid as a sequence of integers. Note that the variation 
in the number of steps taken by Algorithm EST reflects variation in Thai ratio 
of the bounds in (4.2). 

TABLE 1 

Example ta Algorithm steps sefpeme (see text) 

4 10 EST 

RTSrn 

5 5 EST 

RTSAFE 

10 
5 
9 

10 
9 
7 

10 
5 
3 

22 

(3,% 3,3,3,% 3,% 293) 
(NNNNIq 
(5,&S, 5,5,3,3,4,5) 
(BBBBNNNNNN) 
(4,4,3,4,4,4,39 493) 
(NNNNNNN) 
(10, 1, 1, 10, 1, 10, 1,103 il@, 10) 

(NN 
(4,494) 
(NNBBNB.. . NBBNB) 
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I 0 0 01 

A= 
10 0. 
0 1 0 1 

Hahn= [12] states that i&(A) = i(l+&)‘fi = 0.8994. The computed value 
of &(A) was correct to 15 digits. P = G(&dA)) has one zero e@annhe and 
fwooioTder1,anditsupper~isgiventofaursigniflcantfignresby 

‘!M55!a 
I 

0.4370 0.5559 
P= 0.6871 0.1689 

0.7682 1 . 
For mmparison, &(A) = 1.2247 and 

[ 

0.1768 OSSMI 0.1768 

xi+ 0.3536 0aM.I. 1 0.1768 

Exums2. Aisaperturbationd&e5x5Hihrtmatrix((i+j- 
1)~‘),ob~~by~~the(4,5)element~zero.~eslower~~~ 
with the initial SeqWU!eofbiSf&h~~~,~~by~2~sne9sof 
$(A) = O.W32 trJ p(C) = O.Q625 [see note (4) oh Section 0]. 

-1 -1 -1 

To five figures the computed qA) is 1.27+. G&(A)) has one zero 
eigeinYh.q t!he others being of order I. The closeness of &&A) to p(C) = 
1.2071 does not unduly affect the convexgencq although we did observe that 
many mare steps were _ when using a weaker initial bra&t t&an that 
given by (4.2). 

EXMF+IS~. HereA=2= T-I++,oforder 10, where e=[l,l,..., llT 
dDis dia*naI, composed of blocks 



It is easy to see that &(A)=& and that G(i3dA))= 2eeT, which has a zero 
edgemde of muhiplicity 9. Despite the eigenvalm rapid conver- 
gence is obtained, with the computed &A) cone& to 14 fight. For 
t,xnmm &&A) -m and X, = sesT. 

5. _4= 1, - 1, - 1, - 1) +O.Ole,e,T, where e, is the fth 
cohmm of the identity. Hem, MA)= l.O~p(C)=O.oQs. The very slow 
convxxgenceiscausedbylossofsignifhtfiguresinewh~thg 

ih4w = s..- 2.5x lO+ = h&G(r)). 

6. CONCLUSIONS 

IntheF&eniusnorm,theuniquepositiveappr&untofA,andthe 
distancei!~A),am~evhtedusingasinglespectmldezompcsition. 
IIhos’s formula (3.1) for &A) poses some interesting computational 
~~~Esr~~eflident~y~~~~~AXanda~~~ 
app~&~t,toIowaccu@y.Forhighaocuracycomnplltatiansthezero 
fWingMmiqueoHection6wodcswelhmostcases,andwehavenot 
encounW0dany~in~~~~pasitive~proximant 
G&(A)) has mukple zero e@wahes. The usehhss of the formula (3.1) 
~~accunrcy islimitedbyitspotentialhrlossofsig&- 
cant~whichcanahttheatWnableaccuncyandslowtheconver= 
geu~~ofaniterati~~.Foat?mately,suchlossofsignifi~seems 

REmmucEs 
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