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ABSTRACT

The nearest symmetric positive semidefinite matrix in the Frobenius nomn to an
arbitrary real matrix A is shown to be (B + H)/2, where H is the symmetric polar
factor of B=(A + AT)/2. In the 2norm a nearest symmetric positive semidefinite
matrix, and its distance §,(A) from A, are given by a computationally challenging
formula due to Halmos. We show how the bisection method can be applied to this
formula to compute upper and lower bounds for 8,(A) differing by no more than a
given amount. A key ingredient is a stable and efficient test for positive definiteness,
based on an attempted Choleski decomposition. For accurate computation of 8,(A)
we formulate the problem as one of zero finding and apply a hybrid Newton-bisection
algorithm. Some numerical difficulties are discussed and illustrated by example.

1. INTRODUCTION

Symmetric positive definiteness is arguably one of the highest mathemati-
cal accolades to which a matrix can aspire. For symmetry confers important
advantages and simplifications in the eigenproblem, and positive definiieness
permits economy and numerical stability in the solution of linear systems.
Thus i is pleasing that in a wide variety of physical problems the application
of minimum principles gives rise to symmetric positive definite linear systems
[19]. But in some applications a matrix that is expected to be symmetric
positive (semi)definite fails to be so, and it is required to approximate it by a
matrix that is. A well-known example occurs in detecting and dealing with an
indefinite Hessian in optimization [10]. In another example, mentioned in
[18], it is required tc compensate for the errors of measurement, computation,
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104 NICHOLAS J. HIGHAM

or even typing, which could vitiate the symmetry or definiteness of a matrix.
Some other problems with mairix definiteness constraints are described in [8].

This work is concerned with the computation of nearest symmetric
positive semidefinite matrices to an arbitrary matrix, in the 2-norm and in the
Frobenius norm. (We will use the abbreviation psd for “symmetric positive
semidefinite.”) Our work adds to the recent literature on matrix nearness
problems {3, 5, 13, 14, 20).

In Section 2 we show that in the Frobenius norm there is a unique nearest
psd matrix to A, which can be expressed in terms of the polar decomposition
of the symmetric part of A. This nearest matrix is easily computed using a
single spectral decomposition.

In the 2-norm there are, in general, many nearest psd matrices to A.
Halmos [12] obtains one such matrix in terms of a convenient, though
computationally challenging, formula for its distance from A. We use Halmos’s
formula to derive methods for estimating and computing this matrix and its
2-norm distance from A.

Halmos’s result is stated and explored in Section 3. In Section 4 we
develop a bisection algorithm, similar to that in [3], for computing upper and
lower bounds on the 2-norm distance to the nearest psd matrix. To imple-
ment the algorithm we need an efficient and numerically stable method for
testing whether a given symmetric matrix is positive definite. We show in
Section 5 that an aitempted Chcloski factorization has the required proper-
ties, and we investigate a “reverse pivoting” implementation that attempts to
reduce the cost.

In Section 6 we consider the use of a hybrid bisection Newton iteration
for computing the distance to high accuracy. Section 7 presents some
illustrative numerical examples.

Our notation is as follows. All matrices are assumed real (there is no
difficulty in extending all the results and algorithms to the complex case). We
use the 2-norm,

IAlly = p(ATA)"2,

where the spectral radius p(B)=max{|\|:det(B—AI)=0}, and the
Frobenius norm

1/2
||A||p=(2a?,) -
i,j

Recall that a symmetric matrix A is positive definite if its eigenvalues are
positive, and positive semidefinite, which we will denote by A > 0, if its
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eigenvalues are nonnegative. Following Halmos [12], the distance in the norm
|l |} from an arbitrary A to the set of psd matrices is denoted by

8(A)= min |lA-X],
X=X">0

and any psd X satisfying ||A — X|| =8(A) is termed a positive approximant
of A in the given norm. For a psd A, A2 denotes the unique psd matrix X
satisfying X2= A.

It is important when solving a numerical problem to understand the
limitations imposed by finite precision arithmetic. Whatever method is used
to compute the distance 8(A), we cannot expect better than to obtain the
true distance for a slightly perturbed matrix, that is, a value § = 8(A + E)
where ||E|] < €]|A|], ¢ being a small multiple of the working precision. Then

|8 - 8(A)| < IEN < ellAll (11)

which gives an upper bound ¢||Aj| or the absolute error. Writing (1.1) in
terms of the scale independent quantity 8§(A)/||A|| < 1, we have, for §(A) # 0,

§ 84

A0~ nAl|  (8(a))~*
<)
Al

Hence the bound on the relative accuracy with which we can compute
& A)/||A|| depends on the size of the quantity itself; generally, the smaller it
is, the fewer significart figures we can obtain. Interestingly. the same
conclusion applies to any relative distance function, such as tte reiative
distance to the nearest singular matrix (which for the 2-norm is the reciprocal
of xg(A) =||AllgllA~Yl5).

8. THE FRORFNIUS NORM POSITIVE APPROXIMANT

The following result gives the sclution to the probiem of positive ap-
proximation in the Frobenius norm. The result appears to be new.

Treorem 2.1. Let AGR™™, and let B=(A+AT)/2 and C=
(A = AT)/2 be the symmetric and skew-symmetric parts of A respectively.
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Let B=UH be a polar decomposition (UTU=1, H=HT>0). Then X;=

(B + H)/2 is the unique positive approximant of A in the Frobenius norm,
and

8:(A= X A(B)+NCE.

A(B)<0O

Proof. Let X be psd. From the fact that ||S+ K||2 =S|I + | K|
S=8T and K= — K7, we have

A — XIi3 =iiB — X|IE + ICIIE,

and so the problem reduces to that of approximating B. Let B=ZAZT
[ZTZ=1, A =diag(},)] be a spectral decomposition, and let Y =ZTXZ.
Then

IB—XiiF=1IA - Y|z

= 2 y?,*'Z(?\ yu)

i#j
> X (7\5"!1.';)2? 2 A,
A,<0 A, <0

since y;; > 0 because Y is psd. This lower bourd is attained, uniquely, for the
matrix Y = diag(d,), where

A;, A 20,
d;= { 0 e (2.1)
 that is,
Xp=Zdisg(d,)Z". (2.2)

The representation X =(B + H)/2 follows, since H=Zdiag(A\,)ZT. =

Computation of the positive approximant X = (B + H)/2 is straightfor-
ward. The profsired approach is to compute a spectral decomposition of B
and to form X according to (2.1) and (2.2). An altemmative, when B is
nonsingular, is to compute H using the iterative algorithm of [13], which is
based on matrix inversions.
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3. A 2NORM POSITIVE APPROXIMANT

Haimos [12] proves the following result, in the more gener:] vontext of
linear operators on a Hilbert space.

THEOREM 3.1. For A€ER"™*",
8,(A) =min{r>0:r21+C2> 0 and B+ (r¥1 + C%)*> 0}, (3.1)

where B=(A+ AT)/2 and C=(A— AT)/2 are the symmetric and skew-
symmetric parts of A respectively. The matrix

P=B+[8(A)1+cC?]"” (32)

is a positive approziziant of A.

The importance of Halmos’s result is that it replaces the problem of
minimizing over the set of n X n psd matrices by the much simpler problem
of minimizing over the nonnegative scalars.

It should be stressed that a 2-norm positive approximant of A is not in
general unique. To see this, note that B=(A + AT)/2 is a nearest symmetric
matrix to A in the 2norm [7]. If B is psd, then clearly it must also be a
positive approximant for A; but if C2 is not a multiple of the identity, then B
differs from the positive approximant given by (3.2). For results on the
uniqueness of posiiive approximamis see {1, 2, 12].

We now examine some properties of the matrix

G{r)=B+(r’I+ C")V2

which occurs in (3.1). The eigenvalues of r2I + C2 are r2—|A(C)| since
A,(C) € iR because of C’s skew-symmetry. Thus the condition r%I + C2> 0
in (3.1) is equivalent to r>p(C). The next two results, combined with
Theorem 3.1, form the basis for the numerical methods to be developed in
Sectonsz 4 and €.

Lemma 3.2. A (G(r)) is a strictly monotone function of r (r > p(C)).
Proof. Let r > p(C) and 8r >0 Then (r + 8r)%I + C? is positive defi-
nite, and hence so is

11/2

D= !(r+81‘) I+C? 7"+ (¥ +C%)2
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We have
G(r +8r) = G(r) = [(r + 8r)’1 + C2|* - (r21 + C2)"/*
=D"! [(r +8r)° - r2] I=(2r8r +8r2)D"1,

using the fact that the two matrices whose sum is D commute. Thus
G(r + 8r) — G(r) is positive definite, which implies that A, (G(r + 8r)) —
A i (G(1)) > 0, as required. ]

CoroLLARY 3.3. Suppose G(p(C)) is not positive semidefinite. Then
there is a unique r* > p{C) for which G(r*) is positive semidefinite and
singular. For r > r*, G(r) is positive definite, and for r < r*, G(r) has at
least one negative eigenvalue.

The next result shows that from an estimate r for r* = §,(A) we obtain a
matrix G(r) whose distance from A is correspondingly close to the mini-
mum, 8,(A).

LeMma 34. [[A—-G(7)lig=r(r 2 p(C)).
Proof.
I4-G(r)l.=[c- (1 +c)",

= s (.2 ..2\1/2
i,,'é'%ml'" (r2-p2)"%|

=Tf. [ |

Finally we consider the role of the Frobenius norm positive approximant
in approximation in the 2-norm. When A is normal (that is AAT = ATA),
Xy=(B+ H)/2 is actually a 2-norm positive approximant of A. This is
shown by Halmos 12). Note, however, that X is generally different from P
in (3.2). For arbitrary A we can show that X, is an approximate minimizer of
the Z-norm distance ||A — X|j,.
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Proof. The lower bound is trivial. For the upper bound,

IA—Xgllg=[|C+4(B- H)|,<IIClls + 3IIB - Hlg
=p(C)+max{0, —A,.,(B)},

since B — H = Z diag(\; — |\ ZT, Z7Z = I (see the proof of Theorem 2.1).
We have p(C) < §,(A). Also

0 <A+ 81 ) hoB) A [P+ 1]
€ A B)+ 85(A),
since C2 has negative eigenvalues; thus
max{0, — A ,u(B)} < 8,(A),
as required. -

4. A BISECTION METHOD FOR ESTIMATING §y(A)

Except in special cases (such as when A is normal) there is no direct way
to compute 8,(A) from (3.1}, because the eigenvalues of G(r) =B +(r%I +
C2)V/2 are nonlinear functions of r. Therefore we turn to iterative methods.
‘We suppose in this section that 82(A)1stobewt|matedtomodestaccuracy

Suppose G(p(C)) is not positive semidefinite [if it is, then §,(A) = p(C)}.
Corollary 3.3 suggests the following bisection approach. Find an interval
[a, B] containing r*=38y(A). ¥ G(y) is positive definite, where y=
(a+ B)/2, accept the interval [a, y] containing #*; otherwise accept [v, B].
Repeat the process uniii the desired accuracy is obtained.

A suitshle convergence test is (since 0 < a<f8)

%——— < max{ fa, tol}, (4.1)

where j < 1 is a relative error tolerance, and tol is an absolute error tolerance
which takes effect when « is zero or very small. A suitable choice for tol is
u)|All > where p should be no smaller than the machine precision [cf. (1.1)].
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The cost of forming G(v) at each stage can be reduced considersbly by
making use of a spectral decomposition of C2. If

C:=ZAZT, 2"Z=1I, A=diag(},),
then
G(r) =B+ Z(r¥ + A)?27
=z[27BZ +(r?1 + A)/¥] 27,

and it suffices to form and test for positive definiteness the matrix B+ +
A)'72, where B =27BZ, and where the square root is trivial to compute.
An initial interval containing r* is given by the bounds

max{ p(C), max (B —2,(C?) M) <r<p(C)+M,  (42)

where
M =max{0, — A_,.(B)}.

The upper bound is from the proof of Lemma 3.5, and the second lower
bound follows from the fact that a psd matrix has nonnegative diagonal
elements. These bounds differ by nc more than a factor 2, and they are exact
when A is symmetric (since C=0). We mention that computation of
A (B) could be avoided by using the alternative, but potentially much
weaker, upper bound |!Ajl;.

We shtnin the following algorithm.

AlLcoRrTHM EST,

Input: A eR"*", a relative error tolerance f <1, and an absolute error
tolerance tol.
Output: @, 8 > © such that

a<8(A) € B < a+2max{ fa,tol},

and a psd matrix X such that [|A — X||,= .

= (A+AT)/2; C=(A—AT)/2.

1. B
2. C*=ZAZT (spectral decomposition).
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B:=Z"BZ.
Form an interval [a, B8] bracketing 8,(A) using (4.2).
If B+(a?l + A)/2 is psd set B :=a and goto step 7.
While (8 — a)/2 > max{ fa, tol} -
r==(a+p)/2,
G=B+(r% + A)1/2,
if G is psd then B=relse a=r.
7. X=Z[B+(B% + A)?)ZT.

The test in step 5 identifies the cases where the lower bound is exact and
hence sectioning is unnecessary.

Algorithm EsT works entirely in real arithmetic. In step 2 one can either
form C? explicitly and apply a symmetric eigensolver, or compute a real
Schur decomposition C = ZDZT (preferably using a routine that takes ad-
vantage of skew-symmetry) and take A =D2 The former approach is
numerically stable, since [IC|I§ = ||C?l,.

A remaining question is how to test the definiteness of G in the iteration
of step 6. This is considered in the next section.

SRR o

5. TESTING FOR POSITIVE DEFINITENESS

In Algorithm EsT we require a method for determining whether a given
symmetric matrix G is positive semidefinite. The method should be efficient
and numerically stable. By the latter we me:n that the answer, “yes” or
“no,” should be the correct answer for a nearby symmetric matrix

G=G+E, |[Elz<elGlls,

where ¢ is a small multiple of the machine precision. Since with an arbitrarily
small perturbation a semidefinite matrix can become definite, it follows that
in finite precision arithmetic testing for definiteness is equivalent to testing
for semidefiniteness. We will adopt the viewpoint of testing for strict
definiteaess,

One approach is to compute the eigenvalues of G, using the symmetric
QR algorithm [11, p. 281}, and to check if the smallest computed eigenvalue
is positive. This approach is certainly numericaily stable, since the computed
eigenvalues are those of a nearby matrix [11, p. 282]. The cost is abont 2n°/3
flops.

A less expensive approach is to attempt to compute a Choleski dectin-
position of G, declaring the matrix positive definite if the process succeeds,
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that is, if no zero or negative pivots are encountered, and not positive definite
otherwise. The cost is at most n3/6 flops, and depends on the number of
successful elimination stages. This Choleski approach is related to techniques
to be found in [17, p. 46), where LDLT factorizations are used to compute
the inertia of a symmetric matrix, and in [4], where the inertia of a symmetric
Toeplitz matrix is computed using the Levinson-Durbin algorithm.

The stability, or otherwise, of the Choleski definiteness test does not seem
obvious. Indeed, at first sight it is not clear why instability cannot contrive to
allow Choleski factorization of a “safely” indefinite matrix to succeed. To
investigate the stability we turn to the classical error analysis for the Choleski
decompcsition.

e

TaeoreM 5.1 [15, 21). Let G ER™*" be a positive definite metrix of
fAoating point numbers. Then there are small constants ¢, and d,, such that

(a) the Choleski algorithm runs to completion if k(G)c,u <1; and

(b) the computed Choleski factor L satisfies
Li’=G+E, | Elly<d,ulGlls. m (51)

Theorem 5.1 immediately yields one half of the required stability result.
For if Choleski factorization of G breaks down, then G cannot be positive
definite with x4(G)c,u <1 as this would contradict part (a). Thus either G is
not positive definite or it is positive definite with x,(G)c,u > 1. In the latter
case G is within 2-norm distance c,u||Gljg of a singular, symmetric matrix,
and the answer “not positive definite” is therefore the correct one for a
matrix close to G.

Considering now the “positive definite” answer, we note that Theorem
5.1 apparently is not applicable to general symmetric matrices G. However,
examination of the proofs in [15, 21] reveals that the backward error result
(5.1) holds without any assumption on the definiteness of G —it requires only
that the algorithm run to completion. It follows from (5.1) that if Choleski
factorization of a symmetric matrix G succeeds, then & is near to a positive
definite matrix, namely LLT.

We conclude that the Choleski positive definiteness test is numerically
stable.

A modification tc the Choleski test which can reduce the cost without
compromising the stability was suggested by C. F. Van Loan (private
communication). The idea is to use a “reverse pivoting” version of the
Choleski aigorithm, in which at each stage one chooses as pivot the smallest
clement among the remaining diagonal elements, with the aim of inducing
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early breakdown of the process when A is not positive definite. To investi-
gate t-« effectiveness of reverse pivoting we considered the saxpy implemen-
taiion of the Choleski algorithm, as used in LinPACK’s scapc [6). in which at
the kth stage a rank 1 matrix is subtracted to zero out the kth row and
column, at a cost of (n—k)%/2 flops. It-is casy to construct examples in
which either of the reverse pivoting and no-pivoting sAxpy versions terminates
at an earlier stage than the other. We ran some numerical tests using a
modified version of scapc, both within Algorithm EsT (see Section 7) and on
random symmetric matrices with various spectra, with n < 25. With only one
exception, the reverse pivoting version terminated at the same, or an earlier,
stage than the no-pivoting version. However, considering that approximately
half the work of a complete factorization is done after [n/5] stages, the
computational savings brought by the reverse pivoting implementation were
relatively small. In fact, we recommend the use of the nopivoting spor
Choleski algorithm used in LINPACK’s sPOFA [6], combined with an initial scan
for nonpositive diagonal elements. Note that in this implementation the kth
stage costs k2/2 flops, so for matrices that are not positive definite, less work
will be required than with the no-pivoting saxpy version.

6. ACCURATE DETERMINATION OF §,(A)

If 8,(A) is to be computed to many significant figures, then it is desirable
to use a method that converges more rapidly than Algorithm est. To obtain
such a method we assume that §,(A)> p(C) and we use Theorem 3.1,
Lemma 3.2, and Corollary 3.3 to reformulate the problem of computing
8.(A) as that of finding the unigue zero of the function

)= (G(r)),

o~
2
[
e’

where
G{r) =B+ {3 +C2)'/%

Provided A_,(G(r)) is a simple eigenvalue, then f is differentiable at
r > p{C}, and, using standard analysis [11, p. 202],

Ar)y=2(s)"C(r)a(r)

=ra(r) (r3 + C?) "V x(r), (6.2)
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where x(r) is an eigenvector corresponding to A . (G(r)), normalized so that
[lx()llg = 1. We can therefore apply Newton’s method, suitably constrained
to the interval [p(C), ov) on which f is defined. We will use a “fail-safe”
hybrid Newton-bisection algorithm, in which a bisection step is taken if the
Newton step either would leave the current bracket or would not produce a
sufficient reduction in the size of the bracket.

There are several details concerning the implementation.

(1) If A is normal, then X is a 2-norm positive approximant and both
X and 8,(A) may be computed from a single spectral decomposition, that of
A (see Sections 2 and 3). This will be less expensive than the Newton-bisec-
tion approach, and so normal matrices should be treated as a special case.

(2) An initial bracket can be obtained from (4.2). A spectral decomposi-
tionof;"shoddbeusedasinAlgoﬁthmEsrtoreducethecostofevaluating
fand f.

3) I A, (G(r)) is a repeated eigenvalue, then f is not differentiable at
r; the expression in (6.2) exists, but it is not uniquely defined. Finding the
zero of f in (6.1) can be posed as a nonlinear inverse eigenvalue problem:
Minimize r subject to A,(G(r))>0 for all i. The behavior of Newton’s
method for solving linear inverse eigenvalue problems is investigated in [9).
It is shown that local quadratic convergence is generally obtained, both in
theory and in practice, even when there are muitiple eigenvalues at the
solution. It seems reasonable to expect this behavior to hold also for our
nonlinear problem. In any case, the hybrid Newton-bisection algorithm is
guaranteed to converge, by construction, albeit only linearly in the worst
case. A pleasing result in these circumstances is that the positive approximant
P = (G(84(A)) has the minimum number of zero eigenvalues over all positive
approximants of A. This follows from Theorem 4.2 in [1], which states that
P — X > 0 for any 2-norm positive approximant X of A.

(4) Depending on the relative separation of r, p(C), and 8,(A), the
Newton step may leave the range [p(C),00) on which f(r) is defined,
causing a bisection step to be taken. By considering the n =1 case, {r)=
b+3r3—csa (7 > |c]), which represents the upper half of a parabola, it is
easy to see that more steps may be required for convergence when §,(A) =
p(C).

(5) Since we are using a spectral decomposition of C2, we work with
G(r) in the form G(r) = B +[r2I — diag(uZ)]:/2 (see Section 4). For r = r*,
when forming

gu(r) = Bii + V"'s -1, (6.3)

loss of significant figures will occur in the subtraction when #* = p(C), and
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may occur in the addition: for example when B is diagonal, so that {if G(+*)
is not positive definite] A, (G(r*)) = g,(r*) = € (some ). The accuracy of
ie compuled function and derivative values may be adversely wffected (see
Example 5 in the next section). Unfortunately there does not seem to be any
way to avoid these losses of significant figures, but at ieast they are easily
detected.

7. NUMERICAL EXAMPLES

We have implemented Algorithm EsT, and the zero finding approach of
section 6, in FORTRAN 77 on a CDC Cyber computer with machine precision
u = 3.55 X 10713, We used the NAG Library spectral decomposition routine
Fo2ABF for all eigencomputations. For zero finding by hybrid Newton-bisec-
tion we used subroutine RTsAFE fromi [18), specifying the stringent absolute
error tclcrance ujjAllz [see (1.1)]. An initial bracket was obtained from (4.2).
In Algorithm Est we took f=5X%10"%, and we tested for positive definite-
ness using a reverse pivoting modification of LINPACK’s scHDC [6] (see Sec-
tion 5).

For each of the five examples presented we report in Table 1 the number
of steps taken by Algorithm EsT and by rrsaFe. We alsc show the sequence
of steps taken by rrsare, with “N” for Newton and “B” for bisection, and
the number of successful stages for each attempted Choleski decomposition
in Algorithm EsT, specified as a sequence of integers. Note that the variation
in the number of steps taken by Algorithm st reflects variation in the ratio
of the bounds in (4.2).

TABLE 1
Example n Algorithma Stens Sequence {sce text)

1 3 EST 10 3233323223
RTSAFE 5  (NNNNN)

2 5 EST 9 5,5,5,55,3,3,4,5)
RTSAFE 10  (BBBBNNNNNN)

3 4 EST 9  (4,4,3,4,4,4,3,4,3)
RTSAFE 7 {NNNNNNN)

4 10 EST 10 (10, 1, 1, 10, 1, 10, 1, 10, i3, 10)
RTSAFE 5 (NNNNN)

5 5 EST 3 (4,4,4)
RTSAFE 92  (NNBBNB...NBBNB)
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ExampLE 1.

0 0 0]
A=|1 0 ol
010

Halmos [12] states that 8,(A) = 1(1+v5)"/% = 0.8994. The computed value
of 8,(A) was correct to 15 digits. P = G(J5(A)) has one zero eigenvalue and
two of order 1, and its upper triangle is given to four significant figures by

f05559 04370 0.5559
P zl 0.6871 0.1669 |.

0.7682
For comparisbn, 8;(A) = 1.2247 and

0.3536 0.2500 |.

0.1768 02500 0.1768
Xp=
0.1768

ExampLE 2. A is a perturbation of the 5X5 Hilbert matrix ((i + j —
1)~}), obtained by setting the (4,5) element to zero. The slower convergence
with the initial sequence of bisections cai be explained by the closeness of
8,(A) = 0.0832 to o(C) = 0.0625 [see note (4) of Section 6}.

ExampiE 3.

1 -1 -1 -1
_lo 1 -1 1
4=1e o 1 -1f

o o 0 1

To five figures the computed 8 (A) is 1.2748. G(8y(A)) has one zero
eigenvalue, the others being of order 1. The closeness of §,(A) to p(C) =
1.2071 does not unduly affect the convergence, although we did observe that

many more steps were required when using a weaker initial bracket than that
given by (4.2).

ExampPLE 4. Here A = 2¢e” — I + D, of order 10, where e=[1,1,...,1}7
and D is block diagonal, composed of blocks

b il
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It is easy to see that 8,(A)=v2 and that G(8,(A)) = 2¢e”, which has a zero
eigenvalue of multiplicity 9. Despite the repeated eigenvalues, rapid conver-
gence is obtained, with the computed 8,(A) correct to 14 figures. For
comparison, 8;(A)=V19 and X, = 18T,

ExampLE 5. A =diag(l, - 1, — 1, — 1)+0.0ie,e], where ¢, is the ith
column of the identity. Here, §;(A) = 1.0:3 p(C)=0.005. The very slow
convargence is caused by loss of significant figures in evalvat

gu(r)=—1+Vr2-25x1075 =2 _,(G(r)).

[G(r) is diagonal.] About 5 figures are lost for r = §( A).

8. CONCLUSIONS

In the Frobenius norm, the unique positive approximant of A, and the
distance 8;(A), are easily evaluated using a single spectral decomposition.
Halmos’s formula (3.1) for §A) poses some interesting computational
problems. Algorithm EsT is an efficient way to estimate §,(A), and 2 positive
approximant, to low accuracy. For high accuracy computations the zero
finding technique of Section 6 works well in most cases, and we have not
encountered any difficulties in problems where the positive approximant
G(8,(A)) has multiple zero eigenvalues. The usefulness of the formula (3.1)
for high accuracy computations is limited by its potential for loss of signifi-
cant figures, which can affect the attainable accuracy and slow the conver-
gence of an iterative algorithm. Fortumately, such loss of significance seems
uncommon.

This work was begun during a visit to Stanford University in summer
1986. I thank Gene Golub for financial support and for providing a stimulat-
ing working environment. I benefited from useful discussions on this work
with Ralph Byers and Michael Overton. The comments of Des Higham and
Jov: Cladwe¥ helved me to improve the manuscrivi.
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