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STABILITY OF THE PARTITIONED INVERSE METHOD FOR
PARALLEL SOLUTION OF

SPARSE TRIANGULAR SYSTEMS*

NICHOLAS J. HIGHAM AND ALEX POTHEN

Abstract. Several authors have recently considered a parallel method for solving sparse triangular systems with
many right-hand sides. The method employs a partition into sparse factors of the product form of the inverse of the
coefficient matrix. It is shown here that while the method can be unstable, stability is guaranteed if a certain scalar
that depends on the matrix and the partition is small and that this scalar is small when the matrix is well conditioned.
Moreover, when the partition is chosen so that the factors have the same sparsity structure as the coefficient matrix,
the backward error matrix can be taken to be sparse.
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1. Introduction. The method of choice for solving triangular systems on a serial com-
puter is the substitution algorithm Several approaches have been suggested for parallel solu-
tion. Implementations of substitution for distributed memory architectures are described by
Heath and Romine [12] and Li and Coleman [15], and a short survey of this work is given
by Gallivan, Plemmons, and Sameh [9, 3.5.2] (see also [11, 6.4.4]). Implementations of
substitution for sparse matrices on shared memory architectures are investigated by Rothberg
and Gupta [20]. Algorithms that are not based on substitution are surveyed by Gallivan,
Plemmons, and Sameh [9, 3.5], Heller [13], and Ortega and Voigt [16]. A new method
has been developed recently for the parallel solution of sparse triangular systems with many
right-hand sides when these vectors are not necessarily available at the same time 1]-[3], [8].
The method involves representing the inverse of the coefficient matrix as a product of sparse
factors, and can be explained as follows

If L nn is lower triangular, we can write L L1L2... Ln, where Lk differs from
the identity matrix only in the kth column:

Ik-1
[kk

(1.1) Lk lk+l,k

Ink
The factorization of L can be partitioned

(1.2) L G1G:z... Gm,

where < rn < n and

1 < i2 < < im+l n -t- 1.
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Note that Gk is the lower triangularmatrix equal to the identity except for columns ik ik+l--
1, which equal the corresponding columns of Lik Lik+l_l, respectively. Defining Gk
Gk(:, ik" ik+l 1) (using the colon notation from [11]) we have the relation

(1.4) L G1G2... Gm [G1, G2 Gm],

which we will use later. Equation (1.2) yields the partitioned, product-form representation

(1.5) L -1 Hm Hm-1. H1, Hk G- 1.

For a sparse matrix L, the idea behind the "partitioned inverse method" is to choose the
partition (1.2) so that (1.5) represents L -1 as a short product of sparse factors. Then Lx b
is solved by forming

(1.6) x HmHm-1... Hlb,

and the advantage is that x can be computed in rn serial steps of parallel matrix-vector mul-
tiplication. Thus on a massively parallel SIMD computer such as the Connection Machine
CM-2, only rn communication steps involving the router are necessary in the algorithm. The
scalar multiplications in each product xk HkXk-1 (where x0 b) can be done concurrently
in time proportional to v, where v is the maximum number of elements of Hk assigned to
a processor, and the additions can be done in logarithmic time 1]. The two extreme cases
are rn n, which gives a modified version of forward substitution (or forward substitution
itself if L has unit diagonal), and rn 1, for which the method forms x L -1 x b. For a
sparse matrix L we would not take rn 1, because H1 L -1 is usually much denser than
L [7, 12.6]. Rather, we would like to minimize rn subject to the condition that each factor
Hk can be stored in the same space as Gk, since rn is the number of serial steps in the parallel
evaluation of x. Since we are assuming that many right-hand sides are to be processed, we
can afford to spend some computational effort in constructing the partition (1.2).

Algorithms for finding a best no-fillpartition (1.2) are described in 1 ]-[3]; such a partition
has the smallest possible number offactors (the minimum value ofrn) subject to the requirement
that each Gk is invertible in place. A matrix X is invertible in place if (X-1)ij 0 whenever

Xij 0 for any assignment of (nonzero) numerical values to the nonzeros in X. Note that Lk
in (1.1) is invertible in place, so a partition with rn n is always a no-fill partition. When L
is sparse, a best no-fill partition could have rn << n. Partitions that incur some fill-in have also
been investigated [3].

Algorithms are also given in [1] and [2] for finding a best reordered partition: this is
a no-fill partition with the fewest factors over all lower triangular matrices PLpT, where
P is a permutation matrix. Let F L + L:r denote the filled matrix corresponding to a
Cholesky factor. It is well known that if L is the Cholesky factor of a symmetric positive
definite matrix A whose nonzero elements are algebraically independent, then the adjacency
graph of F is chordal. By exploiting chordality, very efficient algorithms for computing best
reordered partitions in time and space linear in the order of the matrix (rather than the number
of nonzeros) can be designed for a Cholesky factor L 1 ], 19]. Furthermore, algorithms for
finding a partition with the fewest factors over all permutations P such that the permuted matrix
PFP has the same structure as the filled matrix F have also been designed [17], [18]. Note
that, in this case, the permutation may change the structure of L, and hence the permutation
P has to be applied to A before it is factored.

The numerical stability of the partitioned inverse method has not been studied in previous
work, either theoretically or in numerical experiments. The numerical stability is clearly
questionable because when rn 1 (which gives the best no-fill partition for a dense matrix)
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the method computes x L-1 b, and a numerical example in [6, 4] shows that this
evaluation need not be backward stable. To answer the question of stability we have done
an error analysis of the partitioned inverse method; this analysis is presented in 2. In 3
we describe some numerical experiments that illustrate the analysis and confirm the possible
numerical instability of the method.

Our main findings are as follows.
(1) In general, the partitioned inverse method does not satisfy the componentwise back-

ward and forward error bounds enjoyed by the substitution algorithm (namely, (2.1) and (2.2)).
(2) Normwise stability depends on a quantity p, defined in (2.13), which is a function of

the matrix L and the partition, and which can be arbitrarily large. Specifically, the computed
solution " to Lx b satisfies (L + AL)" b, where IlZXLlloo is bounded in (2.12); the
relative error IIx -’lloo/llx Iloo is bounded in (2.19). If p is of order 1, which is guaranteed if
L is well conditioned, the partitioned inverse method is both normwise backward stable and
normwise forward stable.

(3) If L is sparse and each Gk is invertible in place (as is guaranteed by a best no-fill or
best reordered partition), then the backward error matrix AL mentioned in (2) can be taken to
have the same sparsity structure as L.

Another way to summarize the stability of the partitioned inverse method is to say that
the method is only conditionally stable, with the backward error dependent on the condition
number of L. The partitioned inverse method therefore provides another example, to add to
those discussed by Demmel [4], of how parallelism can conflict with stability.

In future work we intend to examine how particular sparsity structures and other special
properties of L affect the stability of the partitioned inverse method.

2. Error analysis. In this section we give an error analysis of the partitioned inverse
method for solving Lx b. To keep the analysis general we will not make any assumptions
about sparsity. As our model of floating point arithmetic we take

fl(x + y) x(1 + oe) +/- y(1 +/3), loci, 1/31 _< u,

f/(x op y) (x op y)(1 + 8), I1 < u, op ,,/,

where u is the unit roundoff. This model admits machines that lack a guard digit in addition
and subtraction. We place a hat over a variable to indicate a computed quantity.

For later comparison we summarise what can be said about the substitution algorithm.
The computed" satisfies (see, for example, [22, p. 150] or [14])

(2.1) (Z + AL)" b, IAL] < ((n + 1)u + O(u2))lZl.
(Absolute values and inequalities are interpreted componentwise for matrices.) This result
shows that there is a componentwise tiny backward error matrix AL that has the same sparsity
structure as L. From (2.1) it is easy to obtain the forward error bound

(2.2) IIx ’lloo < (n + 1)u cond(L, x) + O(u2),
Ilxlloo

which contains the Bauer-Skeel condition number

IZ-llZllxl Iloocond(L, x)

This bound may be weakened to

(2.3) IIx -’11oo <_ (n + 1)UXoo(Z) + O(u2),
Ilxlloo
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where x(L) IlLllcllZ-lll. Our aim is to see how close the partitioned inverse method
comes to achieving the ideal bounds (2.1) and (2.2). Note that if L is sparse, the constant
n + in (2.1)-(2.3) can be replaced by p + 1, where p is the maximum number of nonzeros
per row over all the rows of L. Similarly, the constants ck that we define below to equal the
partition widths can be redefined to take account of sparsity.

First, we consider the computation of the factors Hk G-1 of L-1 (from L). Because
of its special structure, G is formed without error, and we assume that G-1 is computed by
one of the several stable methods described by Du Croz and Higham in [6] (for example, its
columns may be computed one at a time by forward substitution). For each of these methods
applied to G, precisely one of the following two residual bounds holds, depending on the
method:

(2.4) Ilkak- II <_ (cku / O(u))llkllakl,
(2.5) Iakik II < (cku + O(u2))lakl]Ikl,
where ck ik+l ik + 1. Each residual bound implies the forward error bound

(2.6) I G-I < ckulnkllGkllnkl + O(u2).

(Since we are working to first order, Hk and Hk are interchangeable in all the bounds.)
Applying standard error analysis of matrix-vector products 11, p. 66] to (1.6) we obtain

(2.7) (Hm + Am)(Hm-1 -k- Am-l)... (Hi + ml)b,

where

(2.8) Izl (cu + O(uZ))ll.
If the inner products that occur in the matrix-vector products are evaluated using the fan-in
algorithm for summation, then the constant ck in (2.8) can be replaced by log2 ck. We can
rewrite (2.7) as (L + AL)" b, where

(2.9) L + AL (H + El)-1 (H2 --[-- E2)-I... (Hm + Em)-,
with

(2.10) E, =/x, + (H,- H,).

Now we consider the sparsity of AL. First, we note that if Hk is computed by forward
m(J))-j-- where is thesubstitution, then, by (2.1), its jth column hj satisfies (Gk + ej ej

tz’(J)jth unit vector and I k < ((n + 1)u + O(u2))lakl, so that ’(J) has the same sparsity
structure as Gk. It follows that if Gk is invertible in place, then Hk (whose jth column is
that of (Gk + FJ)-) has the same sparsity structure as Gk. The same is true for any of the
stable methods in [6] because, as explained there, these methods all incur essentially the same
rounding errors. Next, we observe that by (2.8), Ak has the same sparsity structure as Hk, and,
therefore, if Gk is invertible in place, then (Hk + Ek)- (k + Ak)- has the same sparsity
structure as Gk. From (2.9) and the structural relation L G1G2... Gm, we conclude that

if each Gk is invertible in place then the backward error matrix AL has the same sparsity
structure as L. It remains to bound AL.

From (2.9) we have

m

AL y H?l... g_ll H gkH;1. Hk-+ll... Hn --]-- O(u2),
k-1
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so that

m

k=l

If (2.4) holds, then, from (2.8) and (2.10),

]nlEka-1 In-lAkn -4- HI(kH1- I)1

< c.uln-lllnklln-I + c.ulnlllHllG] + O(u2)
2c,ulG, lln,lla,l / O(u2),

and precisely the same bound is obtained if we use (2.5).
Define dn 2 max c,. To obtain a convenient bound for AL we use (1.4), together with

the observation that since IG,IIH,IIG,I differs from the identity only in columns i, i,+1
1, it can be treated like Gk[ when we invoke (1.4). We have

(2.11)

m

IALI < d,,u IGI... IG-I. IGIIHIIG,I. IG+I IGml-4- O(u2)
k=l
m

<dnuE[[l[ [k-l[, IGkIIHkIIGkI, [k+ll [’m[] + O(u2)
k=l

< dnu((m 1)ILl + [0 O, IG,IIHklIG,I, 0 0]) + O(uz)
k=l
rn

dnu((m 1)ILl / IG,IIHkIIG,I (m 1)I) + O(u2).
k=l

This bound is not of the form (2.1) that holds for substitution, because of the summation term.
If rn 1, the bound is IAL] _< 2(n + 1)ulLIIL-1IILI + O(u2). When rn n, the relation

ILkIIL-IIILkI <_ 3]Lkl allows us to simplify the bound to IALI < 4(n + 2)ulLI + O(u2),
which is of the same form as in (2.1).

Taking norms in (2.11) we obtain

(2.12) IIALII < dnu(m 1 + P)llLIIoo + O(u2),

where

(2.13) p
Iakilalllak[- (m- 1)Ill

The scalar p > 1 might be loosely described as a growth factor for the partitioned inverse
method, although it is not related to the growth factor in Gaussian elimination. For any rn < n,
p can be arbitrarily large, but for tn n it is easy to show that p < 3. Under scaling of the
system, p behaves as follows: if D1 diag(di) and D2 diag(ei) are nonnegative diagonal
matrices and we scale Lx b -- (D1LD2) (Dlx) Dlb, then

D LD2 I1

where DIk) diag(1 1, di,, dn) and D2{k diag(1 ,1, e#, eik+,--1, 1 1)
(recall that i is defined in (1.3)). This expression suggests that p is fairly insensitive to the
scaling of the rows and columns of L.
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We see from (2.12) that if L and the partition are such that p is of order one, then the
partitioned inverse method is normwise backward stable; that is, the computed solution "solves a system obtained by making a tiny normwise perturbation to L. Using (2.12), the
sparse backward error property noted earlier can be expressed as follows. Define Z ]n xn

by

1 if lij k O,(2.14) zij 0 otherwise.

Then, if each Gk is invertible in place,

(2.15) (L + AL)" b, IALI < (d,u(m q- p)llZl[ -+- O(u2)) Z,
where the matrix inequality both bounds Alij and shows that AL has the same sparsity structure
as L.

Two useful upper bounds can be obtained for p. By examining the form of the matrix
whose norm is the numerator in (2.13), it is easy to show that p < m maxk tc(Gk). From the
relation

G- Gk+I GmL-G Gk-1

Gk+I... Gm 0 L-(ik" n, ik" n)

we have IIa-ll _< max(l, IILII)max(l, IIL-III). As p is invariant under scalar multi-
plication of L, we can assume, without loss of generality, that L I1 1, and hence we have,
for all partitions,

p < mtc(L).

We conclude that the normwise backward error for the partitioned inverse method is bounded
by a multiple ofx(L)u. Although this bound may be very weak when L is ill conditioned,
it shows that if L is well conditioned then the partitioned inverse method is guaranteed to be
normwise backward stable.

It is interesting to note that dependence of the backward error on the condition number
occurs also in block LU factorization [5]. Another example of this dependence is a parallel
triangular system solver analysed by Sameh and Brent [21], for which a backward error
result with IIzXLII <_ CnUX2(Z)llZll is obtained. It seems to be a rule of thumb that if we
attempt to improve the parallelism of Gaussian elimination or substitution, we will achieve
only conditional stability, with the backward error potentially proportional to some function
of the condition number.

Now we turn to the forward error. One way to obtain a forward error bound is to expand
the equation " (Hm + Em)(nm-1 + Em-1)... (Hi + El)b, which follows from (2.7) and
(2.10). For m 1, this leads to the bound

IZ-llZllt-lllbl I1
/ O(u2)IIx ’11 <_ 2(n / 1)u

(2.16) Ilxll Ilxll

_< 2(n / 1)u0111Z-allZl I1 / O(u2),

where

IL-llbl Iloo(2.17) 0 > 1.
iiZ-lbll
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The scalar 0 can be regarded as a measure of forward stability for the L- b method. Note that
0 is large only when there is a lot of cancellation through subtraction in the product L-1b. Gill,
Murray, and Wright 10, 4.7.2] analyse the L -1b method under the simplifying assumption
that the computed inverse is the correctly rounded inverse. Their forward error bound from a
normwise analysis is proportional to c(L)(IIL-1 [[][bll/llxl[), and so is consistent with
our bound.

For general m, a more useful bound is obtained by manipulating the backward error result.
Since (L + AL)" b implies Ix -’1 < IL-1IIzXLI[’[, we obtain from (2.11)

(2.18)
IIx ’11 _< dn u

I1((m 1)lZ-llZl / ]Z-ll(-km=l IallHllal- (m 1)I))[x[[l
Ilxll Ilxll

+O(u2).

The summation term precludes this bound from matching the ideal bound (2.2), but (2.18)
does share with (2.2) the very desirable property that it is independent of the row scaling of
the system. We can weaken (2.18) to obtain

(2.19) IIx -ll _< dnu(m 1 + p)tc(Z) + O(u2),
Ilxll

where p is the growth factor in (2.13) (of course, this bound could have been obtained directly
using (2.12)). Hence if p is of order one, then the partitioned inverse method satisfies a bound
of the form (2.3), that is, it is normwise forward stable.

3. Numerical experiments. We describe two numerical experiments that illustrate the
error analysis and confirm the potential instability of the partitioned inverse method. Our
experiments were performed in Matlab, which has unit roundoff u , 1.1 x 10-16. Statistics
that we report include

nberr min{" Ib- L’I < llLlleell},
sberr min{e "lb L’I _< IILIIZI’I/,
cberr min{e "lb L’I < ILII’I},

and

IIx 11ferr
Ilxll

where e (1, 1) 7" and Z is defined in (2.14). The quantity nberr is the usual normwise
backward error, written in a way that shows its connection with the "sparse normwise backward
error" sberr. From (2.12) it follows that, to first order, nberr < dnu(m 1 + p), and, ifeach Gk
is invertible in place, sberr satisfies the same bound, by (2.15). The componentwise backward
error cberr is O(u) for substitution, by (2.1). We mention that in both experiments, modifying
the backward errors nberr, sberr, and cberr to include a b term (thus allowing b to be perturbed
in the definition of backward error) changes the backward errors by at most a factor 2.

In our first experiment L Rr, where V QR is a QR factorization of the 15 15
Vandermonde matrix with (i, j) element ((j- 1)/(n- 1))i-1 and b Le. This linear system
is taken from [6, 4]. We solved the system Lx b by using the partitioned inverse method
with "fixed-width" partitions (1.3) having i+1 i + p, for several values of p. Results are
reported in Table 3.1; since L is dense, nberr sberr, so we do not give the sberr values.
We see that as p increases, the normwise backward error increases and the algorithm loses
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backward stability. In these examples, both (2.12) and (2.18) are a factor 103 from being
equalities for p > 4, and the bound p < rn maxk xo(Gk) is clearly very weak. The ideal
forward error bounds (2.2) and (2.3) are 6.43e-4 and 3.87e-3, respectively; ferr exceeds both
values for p > 6, so the algorithm also loses forward stability. The quantity 0 in (2.17) has
the value 0 3.60e 11, so the bound (2.16) predicts forward instability when rn 1, but is a
factor 108 from being an equality. We also solved Lx c, where c (- 1, 1, 1, 1
and the result for p 15 is reported in the last line of Table 3.1. Here, 0 1, and, as predicted
by (2.16), the algorithm performs in a forward stable manner; the tiny backward error is not
predicted by our analysis.

TABLE 3.1
Dense system Lx b, n 15.

2
4
6
8
10
12
15

15

Xo(L) 2.18e12, cond(L, x) 3.62ell

nberr ferr /9 maxkx(Gk)
15 0.00 2.04e-6 3.00 8.38e6
8 4.98e- 18 5.68e-6 2.65e 1.55e7
4 5.77e-16 4.94e-4 1.49e3 9.51e8
3 2.14e-14 4.36e-3 3.62e4 9.51e8
2 9.10e-14 8.42e-3 5.68e5 1.03ell
2 4.73e-13 7.34e-3 2.04e6 1.41el0
2 6.63e- 13 1.1 le-2 2.72e6 3.83e9

6.60e-13 1.13e-2 2.78e6 2.18e12
Lx c, cond(L, x) 3.90e4

9.07e-23 8.78e-ll 2.78e6 2.18e12

In our second experiment L is a 20 x 20 matrix with 58 nonzeros; the entries and their
locations were chosen randomly and then manipulated "by hand" to produce interesting be-
haviour. The inverse of L has 93 nonzeros. We solved the system Lx b, where b Le,
using five different partitions. Partition A corresponds to forming " L-1 b (m 1),
Partition B has rn 2 with G1 L1Le... L14 and Ge L15... Leo, Partition C is a best
no-fill partition, Partition D is a best reordered partition, and Partition E gives a variant of
forward substitution (m n). (Recall that Partition D corresponds to a partition of a sym-
metric permutation of L that preserves its lower triangular structure.) In Table 3.2 we report
the backward errors and p (the system is too ill conditioned for us to determine the forward
errors, but the computed solutions probably have no correct digits).

TABLE 3.2
Sparse system Lx b, n 20.

x(L) 2.69e28, cond(L, x) 1.47e16

Partition (il, i2 ira+l)
A: (1,21)
B: (1,15,21)
C: (1,2,3,4,11,12,13,19,21)
D: (1,5,9,11,17,19,21)
E: (1,2,3 21)

nberr sberr cberr p
5.49e-9 4.26e-6 2.47e- 7.36e19
1.83e-14 4.26e-6 9.48e--2 1.06e14
4.03e-24 1.55e-14 6.96e-14 5.67e3
4.93e-24 1.55e-14 6.96e-14 5.67e3
7.27e-24 3.80e- 17 1.70e- 16 3.00

The results confirm two properties suggested by the analysis.
(1) For partitions in which the factors are not invertible in place (Partitions A and B in

the table), the sparse backward error can greatly exceed the normwise backward error.
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(2) Even a best no-fill partition can yield sparse or componentwise backward errors ap-
preciably larger than those for substitution.

We have been unable to construct a numerical example where the sparse backward error is
large even when p is small, which the analysis suggests may be possible for partitions where
the factors are not invertible in place. Our limited experience with the partitioned inverse
method suggests that, like substitution, it frequently achieves surprisingly small forward and
backward errors in practice. However, in view of the possible instability it is wise to compute
one of the backward errors and make an a posteriori test for stability. Alternatively, if many
right-hand sides are to be handled, it may be preferable to compute/9 or estimate its upper
bound mc(L) before solving the systems. If any of these tests reveal or predict instability,
substitution could be used instead.

Acknowledgements. We thank Des Higham for suggesting improvements to the manu-
script.
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