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ABSTRACT 
A stationary iterative method for solving a singular system Ax = b converges for 

any starting vector if lirnido;, Gi exists, where G is the iteration matrix, and the solution 

to which it converges depends on the starting vector. We examine the behavior of sta- 
tionary iteration in finite precision arithmetic. A perturbation bound for singular systems 
is derived and used to define forward stability of a numerical method. A rounding error 
analysis enables us to deduce conditions under which a stationary iterative method is 
forward stable or backward stable. The component of the forward error in the null space 
of A can grow linearly with the number of iterations, but it is innocuous as long as the 
iteration converges reasonably quickly. As special cases, we show that when A is sym- 
metric positive semidefinite the Richardson iteration with optimal parameter is forward 
stable, and if A also has unit diagonal and property A, then the Gauss-Seidel method is 
both forward and backward stable. Two numerical examples are given to illustrate the 
analysis. 
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1. INTRODUCTION 

Singular linear systems occur in various applications, such as the computation of 
the stationary distribution vector in a Markov chain [ 1, 81 and the solution of a 
Neumann boundary value problem by finite difference methods [ 111. Because 
of the structure and the possibly large dimension of the coefficient matrices in 
these applications, iterative methods are frequently used to solve the systems. 
A potential danger is that the rather delicate convergence properties of the 
iterative methods will be destroyed by rounding errors. Keller [9] discusses this 
possibility for stationary iteration, and gives a short argument from which he 
concludes that “the spurious contributions in null(A) grow at worst linearly and 
if the rounding errors are small the scheme can be quite effective.” In this work 
we extend our analysis in [6] to provide a quantitative error analysis of stationary 
iteration for singular systems. 

In Section 2 we set up our notation and review the behavior of stationary 
iteration in exact arithmetic. In Section 3 we define normwise and component- 
wise forward and backward stability of a numerical method for solving singular 
systems. Backward stability can be defined as in the nonsingular case; forward 
stability cannot, so we derive a new perturbation result to help us formulate an 
appropriate definition. 

A forward error analysis is presented in Section 4. We split the error into its 
components in null(A) and its complement. The error bounds enable us to iden- 
tify conditions under which stationary iteration is normwise or componentwise 
forward stable. A bound for the residual, and hence for the normwise backward 
error, is derived in Section 5. In Sections 6 and 7 we give examples of how uncon- 
ditional stability can be deduced in special cases: we show that (1) the Richardson 
iteration with optimal parameter is normwise forward stable if A is symmetric 
positive semidefinite and (2) the Gauss-Seidel method is both normwise forward 
stable and normwise backward stable if A is symmetric positive semidefinite with 
unit diagonal and has property A. Finally, two numerical experiments with the 
Gauss-Seidel method are described in Section 8. One shows how the analysis 
correctly predicts forward and backward stability for a Neumann problem, and 
the other displays instability of the Gauss-Seidel method, with linear growth of 
the component of the error in null(A), which again is in accord with the analysis. 

A useful tool in analyzing the behavior of stationary iteration for a singular 
system is the Drazin inverse. This can be defined, for A E IPx”, as the unique 
matrix AD such that 

ADAAD = AD, AAD = ADA, and Ak”AD = Ak, 

where k = index(A). The index of A is the smallest nonnegative integer k 
such that rank(Ak) = rank(Ak”); it is characterized as the dimension of the 
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largest Jordan block of A with eigenvalue zero. If index(A) = 1, then AD is also 
known as the group inverse of A, and is denoted by A’. The Drazin inverse is an 
“ equation-solving inverse” precisely when index(A) 5 1, for then AADA = A, 
and so if Ax = b is a consistent system then ADb is a solution. As we will see, 
however, the Drazin inverse of the coefficient matrix A itself plays no role in the 
analysis. The Drazin inverse can be represented explicitly as follows. If 

A=P ; ; P-l, 
[ I 

where P and B are nonsingular and N has only zero eigenvalues, then 

AD = p “dl b’ p-‘. 
[ 1 

Further details of the Drazin inverse can be found in the excellent reference [2, 
Chapter 71. 

2. THEORETICAL BACKGROUND 

Let A E R”“” be a singular matrix. We consider solving Ax = b by stationary 
iteration, using a splitting A = M - N, where M is nonsingular. The iteration 
takes the form 

MXk+i = Nxk + b. 

First, we examine the convergence of the iteration in exact arithmetic. Since 
any limit point x of the sequence (Xk) must satisfy Mx = Nx + b, or A3c = 6, 

we restrict our attention to consistent linear systems. (For a thorough analysis 
of stationary iteration for inconsistent systems see [4].) Writing the iteration as 
Xk+J = Gxk + M-lb, where G = M-IN, and solving this recurrence, we obtain 

111 

Xm+l = G”*+!q, + c GiM-‘b. (2.1) 
i=O 

Since A is singular, G has an eigenvalue 1, so G” does not tend to zero as 
m + co, that is, G is not convergent. If the iteration is to converge for all 
xg then limrrrdoo 6’” must exist. Following [lo], we call a matrix B for which 
lim m+03 Bm exists semiconvergent. 

We assume from this point on that G is semiconvergent. It is easy to see [ 1, 
Lemma 6.91 that G must have the form 

G=P :, ; P-‘, 1 1 (2.2) 
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where P is nonsingular and p(r) < 1. Hence 

lim G” = P 
n+oo 

To rewrite this limit in terms of G, we note that 

Z-G=+ z+-l, 

and, since Z - I is nonsingular, 

(I- GjD =P 
0 0 
o (z_ r>-l P-l 

1 

(2.3) 

Hence 

lim Gm = I - (I - G)D(Z - G). (2.3 
m--f03 

To evaluate the limit of the second term in (2.1) we note that, since the system 
is consistent, M-lb = M-‘Ax = (I - G)x, and so 

G’M-lb = Gi(Z - G)x 
i=O i=o 

= (I - Gm+‘)r 

+ (I - G)D(Z - G)x = (I - oDM-lb, 

using (2.5). We note in passing that the condition that G is semiconvergent is 
equivalent to Z - G having index 1, in view of (2.3), but that this condition does 
not imply that A = M(Z - G) has index 1. 

The conclusion is that if G is semiconvergent, stationary iteration converges 
to a solution of Ax = b that depends on x0: 

l&xm = [I - (I - G)D(Z - G)]xo + (I - G)DM-‘b. (2.6) 

The first term in this limit is in null(Z -G), and the second term is in range(Z- G). 
To obtain the unique solution in range(Z - G) we should take for x0 any vector 
in range(Z - G) (xa = 0, say). In Section 4 we modify the above analysis to 
incorporate the effects of rounding errors. To guide the error analysis we need 
to know what we are aiming to prove. Therefore in the next section we examine 
forward and backward stability for singular systems. 
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3. STABILITY FOR SINGULAR SYSTEMS 

The notion of numerical stability is well understood for nonsingular systems 
Ax = b. A method is said to be normwise backward stable in floating point 
arithmetic if it produces a computed solution? that satisfies 

Ilb - A31 I cnu(llAIl El;11 + IIbID (3.1) 

for some constant c,, whereu is the unit roundoff. As is well known, this condition 
is equivalent to the condition that 5? solves a slightly perturbed system (see [6], 
for example). The definition of componentwise backward stability is obtained by 
replacing the norms with absolute values in (3.1). These definitions are applicable 
also to consistent singular systems, but in this case the size of the residual b - Ay 
cannot be used to bound the error x - y for a particular solution x; indeed, the 
error can be arbitrarily large even when b - Ay = 0. 

However, it is possible to bound the distance from y to the nearest solution 
vector, 

Sp(y) = min(]]y - x](s : Ax = b). (3.2) 

The constrained least squares problem defining 82 (y) is easily solved by noting 
that if AX = b, then z = y - x satisfies A.z = Ay - b = r. The required z 
is the solution of minimum S-norm to the consistent system A.z = T, and so 
62(y) = l(A+r](2, where A+ is the Moore-Penrose pseudoinverse. Hence, like 
the error in the nonsingular case, 62(y) can be bounded in terms of the residual, 
but with ]lA+ ]I 2 re pl acing ]]A-’ 11s. We do not need 82 for our stability definitions, 
but we will make use of it in Section 4. 

A method for solving nonsingular systems is normwise forward stable if 

l/X -31 5 c;u~(A)IIxl(, (3.3) 

where K (A) = ]lA 11 ]]A-’ I], and componentwise forward stable if 

lb -31 f c$ (1 IA-‘1 I4 1x1 11. (3.4) 

Here, and throughout, the norm is assumed to be monotonic (that is, 1x1 5 

lyl =+ Ilxll _( llyll [7, p. 2851). Th ese definitions are clearly unsuitable for a 
singular system, since they involve A-‘. Moreover, since the solution to which 
stationary iteration converges depends on the method [as shown by (2.6)], a 
useful definition of forward stability must be method-dependent. We use the 
following perturbation result as the basis for our definition of forward stability. 
The result projects the perturbations into range(Z - G) and so can be thought 
of as gauging the effect of perturbations to the “nonsingular part of the system.” 
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THEOREM 3.1. Let x be a particular solution of the consistent and singular 
linear system (I - G)x = M-lb, where G, M E RnX” and G is semiconvergent. 
Consider the perturbed system 

E[Z - (G + AG)](x + Ax) = E(M + AM)-‘(b + Ab), (3.5) 

where E is the projector (I - G)D(Z - G), the underlying perturbations are AM, 
AN and Ab, and 

G = M-‘N, G + AG = (M + AM)-‘(N + AN), 

A = M-N, A+AA=(M+AM)-(NfAN). 

Suppose that IlAM = O(e), l(ANll = O(E), and IlAb = O(E). Ifp((Z - 
G)D AG) -C 1, then there exists a vector Ax satisfying (3.5) such that 

Ax = (I - G)DM-l(Ab - AAx) + O(&. 

Proof. We define f to be the vector satisfying 

(M + AM)-‘(b + Ab) = M-lb +f, 

Expanding (3.5) and simplifying, we have 

(Z - G)[Z - (Z - G)DAG]Ax = E(f + AGx), 

which has a particular solution 

[Z - (I - G)DAG]Ax = (I - G)“cf + AGx). (3.6) 

Since p((Z - G)DAG) c 1, the matrix I - (I - G)DAG is nonsingular, and so 
(3.6) has the unique solution 

Ax = [Z-(Z-G)DAG]-‘(Z-G)D(f+AGx) 

= (I - G)o@ + AGx) + O(e2). 

It is simple to show that 

f = M-‘(Ab + AMGx - AMx) + O(e”), 

AG = M-‘(AN - AMG) + O(e’), 

and substituting these formula into (3.7) completes the proof. 

(3.7) 
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Our definition of componentwise forward stability is motivated by assuming 
that 1 AA] 5 E ]A] and 1 Ab] ( E lb], where E = c,u, and using the theorem 
to obtain the first order bound, for any absolute norm, ]]Ax]] _( c,u(] ](I - 
G)DM-l ] (]A] Ix] + lb]) ]I. Thus we define a stationary iterative method to be 
componentwise forward stable if the computed solution?satisfies 

lb -31 I wlll(I - GjDM-‘l IAl IxI(l, (3.8) 

where x is the solution that would be computed by the method in exact arithmetic. 
Note that we have omitted b from the right-hand side, but since ]b I 5 ]A ] ]z( this 
merely changes the constant c,. 

Similarly, a stationary iterative method is normwise forward stable if the 
computed solution? satisfies 

lb -31 5 wll(Z - QDM-‘II IIAII IId. (3.9) 

That these are appropriate definitions of forward stability is supported by the 
properties that they are method-dependent when A is singular, and that when 
A is nonsingular they reduce to (3.3) and (3.4), since then (I - G)DM-l = A-‘. 

4. FORWARD ERROR ANALYSIS 

We use the same assumptions and model of floating point arithmetic as in [6]. 
Thus we assume that rk+r is computed by forming Nxk + b and then solving 
Mxk+l = Nxk + b, and we use the standard model of floating point arithmetic (in 
its weaker form that is valid for machines without a guard digit). The computed 
vectorszk satisfy an equality of the form 

(M + AMk+l)Tk+l = =k + b +fk, 

(4.1) 

or 

where 

&+, ==j+b-&, 

<k = AMk+l%+l -fk. 

For the Jacobi, Gauss-Seidel, SOR, and Richardson iterations it is easy to show 
[6] that 

ltk’kl 5 cnu(IMI t%k+k+lI + INI pkkl + IN, (4.2) 

where c, is a constant of order n; for the rest of the analysis we will assume that 
(4.2) is satisfied. 
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Solving the recurrence (4.1), we obtain [cf. (2.1)] 

?m+l = Gmfl x0 + 2 G"M-'(b - &,&. 
i=O 

(4.3) 

We wish to bound e,+l = x -Tm+r, where x is the limit in (2.6) corresponding 
to the given starting vector x0. Since the iteration is stationary at the solution X, 
we have, from (2.1), 

r = Glnflr + F G’M-lb. (4.4) 
i=O 

Subtracting (4.3) from (4.4), we obtain 

e,,+r = Gm+’ eo + 2 GiM 
i=O 

k--i. 

The first term, G”‘+’ e(r, is negligible for large m, because it is the error after 
m + 1 stages of the exact iteration and this error tends to zero. To obtain a useful 
bound for the second term, we cannot simply take norms or absolute values, 
because CEO Gi grows unboundedly with m (recall that G has an eigenvalue 

1). Our approach is to split the vectors & according to & = r_i”’ + &@I, where 

M-‘&(l) E range(Z-G) andMP1&@) E null(Z-G); thisisawell-definedsplitting 
because range(Z - G) and null(Z - G) are complementary subspaces [since 
index(Z - G) = 1, or equivalently, G is semiconvergent]. Using the properties 
of the splitting, the error can be written as 

We achieve the required splitting for & via the formulae 

<il’ = MEM-'ti, 4:"' = M(Z - E)M-l{i, 

where 
E = (I - G)D(Z -G). 

Hence the error can be written as 

- Gmt-'eo + ~GiEM-l&_i + (I - E)M-' &nL_,. em+1 - (4.5) 
r\ i--n 
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Clearly, as m a 00 the final term in this expression can become unbounded, 
but since it grows only linearly in the number of iterations, it is unlikely to have 
a significant effect in applications where stationary iteration converges quickly 
enough to be of practical use. This point is also addressed in [9] (see the quotation 
in Section I), but without the benefit of an explicit expression for the error. 

Now we bound the term 

S, = 2 GiEM-l&,_i. (4.6) 
i=O 

The inequality (4.2) gives us a bound on the size of the error vectors & that 
depends on the iterateszk. As in [6], we define the ratios 

(4.7) 

in terms of which pk] 5 0,(x( and ]&;‘k] 5 v&r]] for all k. Here, x is the vector 
given in (2.6). We have the componentwise and normwise bounds 

where ch = c, for the co-norm and ck = fit, for the 2-norm. Returning to 
(4.6), we obtain the bound 

m 

IS,,/ = c GiEM-l&_i 
i=O 
nt 

cc (GiEM-‘l~c 
i=O 

and also the normwise bound 

(4.8) 
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The convergence of the two infinite sums is assured by Lemma 2.1 in [6], since 
by (2.2), (2.3), and (2.4), 

G’E = Gi(Z - G)n(Z - G) 

where p(I) cc 1. 
We conclude that we have the normwise error bound 

Ile,+lll I IIGmtleoll +c)-dl+ Y~>W’~I + IIWll4l 

(\G”EK1 II + (m + l)\l(Z - E)i@ll (4.10) 

On setting E = Z we obtain the result for the nonsingular case given in [6]. If 
we assume that I is diagonal, so that P in (4.9) is a matrix of eigenvectors of G, 
then for any absolute norm, 

c O” lIG”EM-lIl ~K(YWIll_:,~r~. 
i=O 

This bound shows that a small forward error is guaranteed if K(P) ]]M-’ I( = O( 1) 
and the second largest eigenvalue of G is not too close to 1. (It is this subdominant 
eigenvalue that determines the asymptotic rate of convergence of the iteration.) 

Turning to the componentwise case, we see from (2.4) and (4.9) that 

00 

c GiE = (I - G)D. 
i=O 

Because of the form of the bound (4.8), this prompts us to define the scalar 
c(A) 2 1 by 

c : 2 IGiEK1l 5 EI(Z - G)nA4-‘] , 
i=O 

in terms of which we have the componentwise error bound 

Iem+11 I Pm+’ eel + c,u(l + 8,){c@W - G)DM-ll 

+lm. + l)l(Z - EhWII~(IMI + (N()(xl. (4.11) 
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Again, as a special case we have the result for nonsingular A given in [6]. 
As in the nonsingular case, the bound (4.11) has desirable scaling properties. 

If the elements of M and N are linear combinations of those of A, then c(A) is 
independent of scalings A -+ DlADz (Di diagonal and nonsingular) and in most 
respects (4.11) is invariant under such scalings-the exception is the term 0,, 
which can be expected to depend only mildly on the scaling. 

From (4.11) and (3.8), we deduce conditions on a stationary iterative method 
that ensure it is componentsvise forward stable: the constants 0, and c(A) should 
beboundedbyd,,aslowlygrowingfunctionofn;theinequalityIMI+INI 5 d;lAl 
should hold, as it does for the Jacobi method, and for the SOR method when 
o E [B, 21, where ~3 is positive and not too close to zero; and the “exact error” 
Gm+leo must decay quickly enough to ensure that the term (m + 1) I (I - E)M-’ I 
does not grow too large before the iteration is terminated. 

Unlike for the case of nonsingular A, it does not seem possible to identify 
important classes of matrices and methods for which componentwise forward 
stability is guaranteed. As an indication of the difficulty, whereas c(A) = 1 for 
the Jacobi and Gauss-Seidel methods if A is a nonsingular M-matrix [6], when 
A is a singular M-matrix c(A) can be infinite. An example for the Gauss-Seidel 
method is the n x n matrix with aii = n - 1 and ay = - 1 for i #j, for which, for 
certain n, (I - G)oM-’ has zero elements that are nonzero in the terms GiEM-‘. 
There is, however, a theoretically interesting class of iterations and matrices for 
which c(A) is likely to be small. This is the class for which A = M - N is a regular 
splitting, that is, for which M-l 1 0, Z - G has index 0 or 1, and NE > 0; this 
definition, from [lo], generalizes the classical definition of Varga [ 141 to singular 
matrices. For a regular splitting, for i s 1 we have 

and so if also EM-l 2 0 then c(A) = 1. Of more practical interest is the fact 
that normwise stability results can be obtained for some standard methods, as 
we show in Sections 6 and 7. 

Finally, we suggest another approach to dealing with the potentially danger- 
ous term (I - E)M-’ c ti in (4.5). P remultiplying a vector by Z - E moves it 
into the null space of Z - G, which is .also the null space of A. If we measure 
error by the distance Ss&) from the iterate?_ to the nearest solution vector [see 
(3.2)], then we can ignore (I - E)M-’ C&, as this term moves us parallel to 
the solution space. Hence, in the normwise case, by a slight modification of the 
above analysis, 

&(%+i) 5 IlGm+‘eol12 

+c;wm[WIl2 + llN112>11~~+~112 f llWl2] 
cc 

xc lIdEM-‘II27 
i=O 
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where $,,+i is the nearest solution vector toZm+r and 

A possible drawback of this approach is that x:+~ can be large normed, which 
may make it an unacceptable solution. 

5. THE RESIDUAL 

Now we investigate the size of the residual, r,+l = b -Azm+r, in order to bound 
the backward error. From (4.3) and (4.4) we find that 

+ m+l = AG”+l 
i=O 

It is easy to show that AGi = HiA, where H = NM-' (recall that G = M-lN). 
Therefore 

Tm+l - 
- Hm+l 

r. + 2 Hi(l - H)t&. (5.1) 
i=O 

Since the right-hand side of (3.1) contains ?? rather than x, we modify the 
definitions of 0, and yr in (4.7): 

With these definitions, &I 5 &pm+1 1 and lpk\j 5 ymIpm+r 11 for 0 5 k 5 m, 
and so, using (4.2), 

I& 5 w[%(lMI + IWtCn+ll + PI], 

ll$k’kll 5 c~+n(llMII + IIWll%m+lll + IIWI]. 

From (5. I) we obtain the componentwise bound 

b-rn+~I 5 IH m+lrol + ~n~S[&(l~l + INl>l%+ll + lbl]> (5.2) 

where 

S = 2 JH'(l- H)I. 
iElI 
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The first term, Hm+’ Q, is the residual of the exact iteration after m + 1 stages, 
so it tends to zero. Since G is semiconvergent and H = MGM-l, H is also 
semiconvergent. Therefore H has the form 

where p(r) < 1, and 

0 
ri(l_r) Q-'. 

1 

It follows from Lemma 2.1 in [6] that the sum defining S exists. 
The bound (5.2) is essentially the same as the one that holds in the case of 

nonsingularA [6]. As in that case, we are not aware of any classes of matrix or iter- 
ation for which (5.2) im pl ies componentwise backward stability. The normwise 
analogue of (5.2) is 

Il~m+lII 5 IIHm+l roll ++J[En(lI~II + II~ll>lizm+lll + llWl]> (5.3) 

where 

CT= llHiU - H)ll. 
i=O 

As is shown in [6], if H = XDX-', with D = diag(&), then for anyp-norm 

(5.4) 

Thus B is guaranteed to be small if H is diagonalizable with a well conditioned 
matrix of eigenvectors and if H has no eigenvalues of modulus close to 1 other 
than the eigenvalue 1. 

For large m the normwise backward error satisfies 

lb-m II 
< c;u yma 

( 
IIMII + IWII 

IIAII It%+111 + llbll - > IIAII ’ 

and for the m-norm the factor (]]M]] + ]]N]])/]]A]] is bounded by 2 for the Jacobi 
method and for the SOR method with 1 5 w 5 2. As we show in the next two 
sections, normwise backward stability can be deduced in certain cases. 
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6. RICHARDSON ITERATION 

In this section we specialize our normwise forward and backward error bounds 
to the stationary Richardson iteration, for which M = al and N = aZ -A, where 
(Y is a parameter. We will assume that A is symmetric positive semidefinite, with 
eigendecomposition A = Q AQT, where Q is orthogonal and 

A = diag(hi), hr > hz > . . . 1 h, > A,+1 = . . . = 0. 

The parameter aopt that minimizes p(G) = p(Z - a_lA) is easily seen to be 

c+ = (hl + h,)/2. For (Y = aopt, G has eigenvalues (iI+ h, - 2&)/(hr + h,); 
since G is symmetric and these eigenvalues are either unity or strictly between 
-1 and 1, we see that G is semiconvergent and hence the Richardson iteration 
converges. We assume now that u = aopt. To evaluate the bound (4.10) we note 
that 

GiEM-r = a-l(Z - a-rA)“AoA = &Q(I - a-‘#AD1\QT, 

from which it follows that 

Since l]Mllz + llNl(s 5 2llAlls, the bound (4.10) simplifies to 

llem+tll12 I IEm+’ eoll2 +c$(l + ~~)[llAll2llA~ll2 + Cm + l>IIZ - ADAl12]I1412. 

Therefore, since AD = (I - G)Dhil-l, we have normwise forward stability as long 
as yx is not too large and convergence is reasonably quick. 

For the residual, since H = G, we obtain from (5.4) 02 5 hi/h,. Thus (5.3) 
yields 

ll~m+1112 5 IW m+1rol12 +c$41Al1211ADl12(~mllAl1211j?m+d12 + llbll2). 

This bound is larger by a factor ]]A]lsllAD 112 than what is needed to guaran- 
tee normwise backward stability. Of course, stability is assured if A has a small 
“Drazin condition number” Ko = ]lAl1211ADl12, and this must be the case if the 
iteration is to converge at a reasonable rate, since p(G) = (KD - l)/(~o + 1). 

The results in this section generalize ones in [15] and [16, Theorems 3.3 
and 3.41 that apply to the stationary Richardson iteration for symmetric positive 
definite A. (In [ 161 the nonstationary cyclic Richardson iteration is also analyzed.) 
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7. GAUSS-SEIDEL ITERATION 

The Gauss-Seidel iteration is the stationary method defined by choosing M to 
be the lower triangular part of A. It is known to converge in exact arithmetic if 
A is symmetric positive definite. In [15] Woiniakowski shows that if A = Z - B 
is a symmetric positive definite matrix with property A, and B has zero diagonal 
elements, then the Gauss-Seidel iteration is normwise forward stable. We now 
show that this result remains true when we allow A to be positive semidefinite. 

Since A has property A, B is of the form 

hence 

As A = Z-B is positive semidefinite and singular (by assumption), 1 = p(B)’ = 
p(FrF) = p(G). It is easy to show that G is semiconvergent, from which it fol- 
lows that the Gauss-Seidel iteration converges for any starting vector. In fact, the 
Gauss-Seidel iteration converges for any symmetric positive semidefinite matrix 
with positive diagonal elements-this follows from general results in [4, Theo- 
rem 8; 9, Theorem 21. 

Our aim is to bound S, in (4.6). Therefore we examine closely the term 
Wi s GiEMpl. Recalling that E = (I - G)D(Z - G) = (I - G)(Z - G)D, we have 

wi = [g xli[: z:;TF][: zz;TFl”[ ;T ;] 
0 F(FTF)i-l(Z - FTF) Z = 
0 (FTF)’ (I - FTF) I[ ‘T 0 (Z-F F) D][ ;T :]t 

where X = F[ (I - FTF)D + (I - FTF)D(Z - FTF) - I] (using [2, Theorem 7.7.11). 
Multiplying out, we have 

Wi = 
FYi_lFT Fyi-1 

YiFT Yi ’ I 
where Yi = (FTF)‘(Z - FTF)(Z - FTF)D, which satisfies Yi = Y”;. It is 
straightforward to show that every I-eigenvector and null vector of B is a null 



180 NICHOLAS J. HIGHAM AND PHILIP A. KNIGHT 

vector of WTWi. (By A-eigenvector we mean an eigenvector corresponding to 
the eigenvalue h.) Now suppose that x is a h-eigenvector of B and k # 0,l. Then 

and if we let y = [hx: x,‘]‘, then we see that WTWiy = k4”-2(1 + ~‘)~y. Since 
B is nondefective, we have found the eigenvalues of WTWi, and so 

where ho is the absolute value of the largest eigenvalue of B that is strictly less 
than 1 in magnitude. 

Since A is symmetric, it has index 1 and 

AD=QT[ “0 ;l]Ql (7.1) 

where Q is orthogonal and Al is the diagonal matrix of nonzero eigenvalues of A. 

From (7.1) and the definition of B we see that ko = 1 - l/]]AD 112. Furthermore, 
if we evaluate ETE explicitly in terms of F, we find that the h-eigenvectors 
of B (h # 1) are 1-eigenvectors of ETE, while the 1-eigenvectors of B are 2- 

eigenvectors ofETE. We deduce that IIEJlz = &, an d a similar procedure reveals 

that ]]I-El]2 = A, too. Itis straightforwardtoshowthat (JMP1]]2 = (1+&)/2. 
Hence, 

II&l112 = IlE~-‘hn II2 + 2 IlWi4-i II2 
i=l 

< - IIEM-‘112 + (1 + hi) 2 h:-l &V 
i=l 

F (3+&) <N = (3 + lk%)t~. 

Using this bound, together with the inequalities ]]M]]~ + ((N](2 5 3(]A](2 and 
]](Z - EhW1112 5 3, we obtain from (4.10) the final bound 

Ilem+ll12 I llGm+1eol12 + ciu(l + ~~NAll2[llA~ll2 + (m + 1)]11~11~. 
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It can be shown that (IAn 112 = 11 (I - G)oM-i 112 provided that F # I. Therefore 
this bound guarantees normwise forward stability as long as yX is not too large 
and the rate of convergence is not too slow. 

Turning to the residual, our task is to bound Cz, ]lH’(Z - ZZ)]]s. Using 
a similar approach to the forward error case we find that the eigenvectors of 
[Wi (I - ZZ)ITZZ’ (I - H) are identical to those of Wi, but now with corresponding 
eigenvalues A. 4i-2(1 - k’)‘(l+ k2), and these eigenvalues h of B are real. Hence 

JlH”(Z - ZZ)lls = sign(h)h2”-l(l - k2)(1 + h2)“2 

for some eigenvalue h of B. Through further manipulation we can show that 
III - ZZJlz < 1.6 and so, since p(B) = 1, 

o-3 

c llff’(~ - WI12 = l/Z - HI12 + 2 sign(h)h2i-1(l - k’)(l + h2)‘/” 

i=O i=l 

i - 1.6 + ]h](l + h2)1’2 

5 1.6+& 

From (5.3) we obtain the final residual bound 

lb-m+1112 5 IWm+4-dl2 +c$4~~JIAll2ll%+~ll2 + ll~lld~ 

which guarantees normwise forward stability for large enough m, provided ym is 
not too large. The derivation of this residual bound is also valid ifA is nonsingular. 
A similar result for the nonsingular case, in which a different infinite sum is 
considered, can be found in [ 151. 

8. NUMERICAL RESULTS 

We illustrate the foregoing analysis with two numerical examples. The computa- 
tions were done in Matlab, for which the unit roundoff u = 2-53 z 1.1 x 10-16. 

Our first example uses the matrix obtained when a Neumann boundary value 
problem in two dimensions is discretized with the standard five point operator 
on a regular mesh, namely, the block tridiagonal matrix [ 111 
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-D -21 
-I D -1 

A= 

where 

-I D ‘.. 

. . . . . . . . . 

. . . D -1 
-1 D -1 

-21 D 

E RN'xN' 

-4 -2 

-1 4 -1 

-1 4 . . . 

D= . . . . ‘. E lRNxN. . . . 

. . . 4 -1 
-1 4 -1 

-2 4- 

The matrix A has a one-dimensional null space spanned by the vector of all ones. 
We took N = 5 and set b = Ay, where y = (1,2, . . . , 25)T. We took three 

different starting vectors x0: a random vector from the normal (0,l) distribution, 
the vector of ones, and the vector of zeros. The iterations were terminated when 
Zk = Zk+r. We report in Table 1 various numbers of interest, including 

and 

condcA, x) = 11 IU - #‘M-l IIAI IxIII 
II~IICU 

where, in each case, x is the true solution corresponding to x0. (We computed x 
from (2.6), evaluating the Drazin inverse by the method in [2, Corollary 7.8.21.) 
We see from the table that the Gauss-Seidel iteration performs in a component- 
wise forward-stable and normwise backward-stable way. This is predicted by the 
error bounds, since c(A), ox, obo, and yr are all relatively small. The component- 
wise backward error, which is not shown, is also less than the unit roundoff. Note 
that, although there are over 100 iterations, the linearly bounded component of 
the error in null(A) does not appear to influence the forward error. 
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Table 1: Neumann problem 

]]Ao]]m = 2.82, ]](Z - G)DM-‘)], = 3.55, 
max{(h( : det(G - hZ) = 0, h # 1) = 0.729, 

c(A) = 23.9, a, = 5.98, 

e, _( 1.93, K _( 1.00, 

tg IIG’EIW1(I, = 4.32, ]](I - E)M-‘II, = 0.5. 

X0 Iters. ]]xJ(, cond(A, x) mink YZ,&) mink 4oo($ 
Random 119 13.4 13.7 4.46E-17 l.l9E-15 

Ones 116 12.5 14.6 4.76E-17 1.56E-15 
Zeros 119 13.5 13.7 2.96E-17 1.18E-15 

For our second example we take a nonsymmetric matrix of the form illus- 
trated by 

that is, ag = u for i > j and ag = (-ly-‘+’ forj > i, except that ~12 = a. This 
is a modified version of a nonsingular matrix used in [5] to illustrate instability 
of the Gauss-Seidel method. By evaluating G, it is easy to show that the Gauss- 
Seidel method converges for this matrix (that is, G = M-IN is semiconvergent) 
whenever ]cz I > 1. We applied the Gauss-Seidel method to the system A,x = b, 
with n = 30 and cz = 4, where b = fl(A,x) with the xi equally spaced on [ -1, l] 
(-1 = Xl < X2 < ... < xn = 1). We took for the starting vector the “exact 
solution” X. The results are displayed in Figure 1, and the relevant statistics are 
as follows: 

]]AD]loo = 1.16E7, ]](I - G)DM-l]], = 1.26E7, 

max( ]h] : det(G - hZ) = 0, h # 1) = &, = 0.25, cond(A, X) = 7.16E8, 

c(A) = 4.32E2, ooo = 3.26E6, 

6, = 1.00, y* = 1.00, 

% IJGiEM-‘/I, = 1.26E7, /](I - E)M-‘II, = 8.14E5, 

lL?&lla2 = 1.00, &(?&) = 2.16E-11. 
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10-7 

forward error 
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Figure 1: Gauss-Seidel iteration 

We see from Figure 1 that the forward and backward errors grow rapidly 
initially. After about 40 iterations the forward error reaches the level 

z IIGiEM-lll,, 
i=O 

which is the order of magnitude of the bound (4.10) for m = 40. Thereafter 
the forward error grows approximately linearly (and continues to do beyond 
the 400th iteration); this is entirely in accord with (4.10), because the linearly 
growing term in (4.10) exceeds the infinite sum for m > 15. The backward 
error remains bounded for m 2 40, since the growing component of the error 
lies in null(A). We do not fully understand the scalloping of the backward error 
curve, but similar behavior with the Richardson iteration has been observed by 
Trefethen [ 121 and Chatelin [3], and one way to investigate this phenomenon is 
via pseudospectra [ 131. This failure of the iteration to converge is not restricted 
to ill-conditioned problems. If we change a! to -4, then llADlloo = 0.65 and 
I( (I-G)DM-l I( o. = 0.64, and the forward and backward errors both grow rapidly 
at first and then exhibit scalloping behavior, with the forward error oscillating at 
around approximately 10-ll. 
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