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Abstract

How small can a stationary iterative method for solving a linear
system Ax = b make the error and the residual in the presence of
rounding errors? We give a componentwise error analysis that pro-
vides an answer to this question and we examine the implications
for numerical stability. The Jacobi, Gauss-Seidel and successive over-
relaxation methods are all found to be forward stable in a component-
wise sense and backward stable in a normwise sense, provided certain
conditions are satisfied that involve the matrix, its splitting, and the
computed iterates. We show that the stronger property of componen-
twise backward stability can be achieved using one step of iterative
refinement in fixed precision, under suitable assumptions.
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1 Introduction

The effect of rounding errors on LU and QR factorization methods for solv-
ing linear systems is well understood. Various backward and forward error
bounds are known that are informative and easy to interpret. Many of the
bounds can be approximate equalities, to within factors depending on the
problem dimension, and so they give a useful guide to the accuracy that can
be attained in practice. (Note that it is still not well understood why the
growth factor for LU factorization with partial pivoting is usually small, but
progress towards explaining this phenomenon has been made recently [24].)

In contrast, there is little published error analysis for iterative methods.
This is surprising, since iterative methods for computer solution of Ax =
b have at least as long a history as direct methods [28]. One reason for
the paucity of error analysis may be that in many applications accuracy
requirements are modest and are satisfied without difficulty. Nevertheless,
we believe the following question is an important one, and in this work we
attempt to answer it for a particular class of methods.

How accurate a solution can we obtain using an iterative method
in floating point arithmetic?

To be more precise, how small can we guarantee that the backward or forward
error will be over all iterations £ = 1,2,...7 Without an answer to this
question we cannot be sure that a convergence test of the form [|b— AZg|| < €
(say) will ever be satisfied, for any given value of € < ||b — Ax||!

As an indication of the potentially devastating effects of rounding er-
rors we present an example constructed and discussed by Hammarling and
Wilkinson [12]. Here, A is the 100x 100 lower bidiagonal matrix with a;; = 1.5
and a;;,—1 = 1, and b; = 2.5. The successive over-relaxation (SOR) method
is applied in Matlab with parameter w = 1.5, starting with the rounded ver-
sion of the exact solution x, given by z; = 1 — (—=2/3)". The forward errors
|Zr — ||/ ]|Z||co and the normwise backward errors 7, (%) (defined in (1))
are plotted in Figure 1. The SOR method converges in exact arithmetic, since
the iteration matrix has spectral radius 1/2, but in the presence of round-
ing errors it diverges. The iterate Tys3g has a largest element of order 10%3,
Tpyo = Ty for k > 238, and for k& > 100, 7,(60: 100) ~ (—1)¥Z100(60: 100).
The divergence is not a result of ill-conditioning of A, since £ (A) ~ 5. The
reason for the initial rapid growth of the errors in this example is that the
iteration matrix is far from normal; this allows the norms of the powers to
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Figure 1: SOR iteration

become very large before they ultimately decay by a factor ~ 1/2 with each
successive power. The effect of rounding errors in this example is to cause the
forward error curve in Figure 1 to level off near £ = 100, instead of decaying
to zero as it would in exact arithmetic. More insight into the initial behaviour
of the errors can be obtained using the notion of pseudo-eigenvalues [23].

To establish what we should try to prove, we review some normwise and
componentwise backward error results and perturbation theory. If y is an
approximate solution to Ax = b then the normuwise (relative) backward error
is

n(y) = min{e: (A+AA)y = b+ Ab, [[AA[ < e[|All, [|Ad[]| < eflb]l}, (1)

where ||| denotes any vector norm and the corresponding subordinate matrix
norm. Rigal and Gaches [22] show that n(y) is given by the explicit formula
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The forward error of y can be bounded using the standard perturbation result

=80 < ayne) + 0w (3)

where x(A) = ||A||||A7Y is the matrix condition number.
The componentwise (relative) backward error is defined by

w(y) =min{e: (A+ AA)y =b+ Ab, |AA| <e€lA], |Ab| <€bl},

where the absolute values and inequalities are interpreted componentwise.
This is a more stringent measure of backward error than the normwise mea-
sure, since each perturbation Aa;; and Ab; is measured relative to the entry
it perturbs. The constraints ensure that a;; = 0 = Aaq;; = 0, and similarly
for b. This latter property is particularly attractive in the context of iterative
solvers, where A is usually sparse and it may not be meaningful to perturb
the zero entries of A [1]. Oettli and Prager [21] derive the convenient formula

w(y) = max —|b — Ayl
i (|Allyl +[0]);’
where £/0 is interpreted as zero if £ = 0 and infinity otherwise.
A perturbation bound involving componentwise quantities is, for any
monotonic norm?,

lo=al o LAALLE D 4 oy

< 2cond(A, 7)w(y) + O(w(y)?), (4)

where cond(A4, x) = |[|A7Y|Al|z]]|/]|z]]. The condition number cond(A, ) is
independent of row scalings A — diag(d;)A, and it satisfies conde (A4, z) <
Koo(A), so the bound (4) is potentially much smaller than (3).

Ideally a numerical method for solving Ax = b will produce a computed
solution Z that satisfies w(Z) = O(u), where u is the unit roundoff. Such a
method is said to be componentwise backward stable. A method that is not
componentwise backward stable may still satisfy a bound of the form

I = ]}

< cpcond(A, z)u + O(u?), (5)

]

LA monotonic norm is one for which |z| < |y| = ||z|| < ||y|| [18, p. 285].
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where ¢, is a constant; this is the same type of forward error bound as holds
for a method that is componentwise backward stable. We will call a method
for which (5) holds componentwise forward stable. Similarly, if n(Z) = O(u)
we call the method normwise backward stable, and if (5) holds with cond(A, z)
replaced by k(A) we call the method normwise forward stable.

In this paper we analyse stationary iterative methods: those that iterate
according to Mxy 1 = Nz +b, using the splitting A = M — N. Even though
this is a relatively straightforward class of iterative methods (as regards de-
termining the rate of convergence in exact arithmetic, say), our error analysis
is not as concise as that which can be done for LU factorization (see, e.g.,
9, Sec. 3.3], [15]), and our conclusions are less clear-cut. It seems inherently
more difficult to obtain useful rounding error bounds for iterative methods
than it is for direct methods. An important feature of our analysis is that
we use sharp inequalities wherever possible, so as to obtain the best possi-
ble bounds. Our results should be of use in guiding the choice of stopping
criterion for an iterative solver; cf. the discussion in [2].

In section 2 we derive the basic recurrences for the error and residual.
Forward error bounds are developed in section 3, and these are specialised
to the Jacobi, Gauss-Seidel and SOR methods in section 4. We find that all
three methods are componentwise forward stable if a certain product ¢(A)6,
is not too large (and w is not too close to zero for the SOR iteration). Here,
c¢(A) > 1 (defined in (23)) depends on the matrix and the splitting, and
0, > 1 (defined in (20)) describes how “well-behaved” the iterates are. For
each method, ¢(A) = 1 if A is an M-matrix (assuming 0 < w < 1 for the
SOR iteration), and ¢(A) can be expected to be of modest size in many
applications. This forward stability result is quite strong, for apart from
triangular matrices and certain classes of tridiagonal matrices [14], the only
class of matrices we know for which LU factorization is guaranteed to be
componentwise forward stable is the class of totally nonnegative matrices
[6].

In section 5 we derive bounds for the residual. We show that any station-
ary iterative method is normwise backward stable under conditions which
include the requirement that the spectral radius of NM~! is not too close
to 1. Unfortunately, it does not seem possible to prove that a small compo-
nentwise backward error will be obtained under any reasonable assumptions.
However, we explain why one step of iterative refinement in fixed precision
does lead to a small componentwise backward error provided certain assump-
tions are satisfied.



We briefly survey existing error analyses for iterative methods. For sym-
metric positive definite systems, Golub [8] derives both statistical and non-
statistical bounds for the forward error and residual of the Richardson method.
Benschop and Ratz [4] give a statistical analysis of the effect of rounding er-
rors on stationary iteration, under the assumption that the rounding errors
are independent random variables with zero mean. Lynn [20] presents a
statistical analysis for the SOR method with a symmetric positive definite
matrix.

Hammarling and Wilkinson [12] give a normwise error analysis for the
SOR method. With the aid of numerical examples, they emphasise that
while it is the spectral radius of the iteration matrix M 1N that determines
the asymptotic rate of convergence, it is the norms of the powers of this
matrix that govern the behaviour of the iteration in the early stages. This
point is also elucidated by Trefethen [23], using the tool of pseudospectra.

Dennis and Walker [7] obtain bounds for ||x—Z41||/||x—Z|| for stationary
iteration as a special case of error analysis of quasi-Newton methods for
nonlinear systems. The bounds in [7] do not readily yield information about
normwise or componentwise forward stability.

Bollen [5] analyses the class of “descent methods” for solving Ax = b,
where A is required to be symmetric positive definite; these are obtained
by iteratively using exact line searches to minimize the quadratic function
F(x) = (A~ 'b—2)T A(A~*b—2x). The choice of search direction p, = b—Ax), =
i, yields the steepest descent method, while py = e; (unit vector), where
176l; = |I7k]lco, gives the Gauss-Southwell method. Bollen shows that both
these methods are normwise backward stable as long as a condition of the
form ¢,x(A)u < 1 holds. If the pj, are cyclically chosen to be the unit vectors
€1, €a,..., e, then the Gauss-Seidel method results, but unfortunately no
results specific to this method are given in [5].

Wozniakowski [25] shows that the Chebyshev semi-iterative method is
normwise forward stable but not normwise backward stable. In [27] Wozniakowski
analyses a class of conjugate gradient algorithms (which does not include the
usual conjugate gradient method). He obtains a forward error bound pro-
portional to x(A)%? and a residual bound proportional to x(A), from which
neither backward nor forward normwise stability can be deduced. We note
that as part of the analysis in [27] Wozniakowski obtains a residual bound
for the steepest descent method that is proportional to k(A), and is therefore
much weaker than the bound obtained by Bollen [5].

Zawilski [29] shows that the cyclic Richardson method for symmetric
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positive definite systems is normwise forward stable provided the parameters
are suitably ordered. He also derives a sharp bound for the residual that
includes a factor x(A), and which therefore shows that the method is not
normwise backward stable.

Arioli and Romani [3] give a statistical error analysis of stationary itera-
tive methods. They investigate the relations between a statistically defined
asymptotic stability factor, ill-conditioning of M ~!A, where A = M — N is
the splitting, and the rate of convergence.

Greenbaum [10] presents a detailed error analysis of the conjugate gra-
dient method, but her concern is with the rate of convergence rather than
the attainable accuracy. An excellent survey of work concerned with the ef-
fects of rounding error on the conjugate gradient method (and the Lanczos
method) is given in the introduction of [11].

The work most closely related to ours is [26], wherein Wozniakowski gives
a normwise error analysis of stationary iterative methods. Some of the as-
sumptions in [26] are difficult to justify, as we explain in section 3.

Finally, we mention that extension of the analysis reported here to sin-
gular systems is described in [17].

2 Basic Equations

We are concerned with the iteration
M.Tk+1 = Nﬂfk + b,

where A = M — N € IR™" is nonsingular, and M is nonsingular. We
assume throughout that the spectral radius p(M~'N) < 1, so that in exact
arithmetic the iteration converges for any starting vector. We assume that
Zky1 is computed by forming Nz + b and then solving a linear system with
M. The computed vectors z; therefore satisfy

(M 4+ AMj11)Zp1 = NZp + b + fi, (6)

where f, is the error in forming fI(NZy +b) and AM; represents the error
in solving the linear system. We will use the following model of floating point
arithmetic, where wu is the unit roundoff:

fllx £y) = z(1+a)y(l+P), laf, 18] < u,
fl{zxopy) = (xopy)(l+4), 6] <u, op=x,/.
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This model is valid for machines that do not use a guard digit in addi-
tion/subtraction. Under this model we have the standard result that

[fil < cou(|NT]Zx| + [0]), (8)

where ¢, is a constant of order n. If N has at most m nonzeros per row then
¢, can be taken to be of order m, but sparsity does not otherwise affect the
analysis below.

We will assume that

[AMya| < culM]. (9)

This is valid if M is triangular (see, e.g., [13]), which is the case for the
Jacobi, Gauss-Seidel and SOR iterations. It also holds if M is (a) totally
nonnegative [6] or (b) tridiagonal and either symmetric positive definite, an
M-matrix, or diagonally dominant [14], assuming in both cases (a) and (b)
that Gaussian elimination without pivoting is used.

We now derive recurrences for the residuals r, = b — AZ, and errors
er, =« — Tj. Using (6),

Tk+1 — b— (M — N)'%kJrl
AM 1Tk — N(Zk — Thr1) — [ (10)

From (6) again,
re. = b— (M — N)zy
= —MZ+ (M + AMy)Tri1 — fr

so that
T, — 1 = M (AMyi1Zi — [ — Tr).

Substituting into (10) gives
reer = NM '+ (I = NMTY(AMy 140 — fr), (11)

which is our recurrence for the residuals. Since e, = A~'r;, we have from
(11)
erpr = ATINM Y Aey, + AT — NM Y (AMy 1 Zey1 — fr)-

Simple manipulation shows that AANM 1A = M~'Nand A~'(I-NM~!) =
M~ so the recurrence for the errors is

i1 = M 'Ney + M (AMyi1Zg41 — fr)- (12)

The following lemmas are needed in the next section.

8



Lemma 2.1 (a) If |B] < E € R™" then |Bx| < E|x|, with equality for
some B with |B| = E.

(b) If B € R™" and |v;| < hy, j = 0,...,m, then X7, Bjr; <
>0 |B;|h;, and there is equality in the ith component for some x, ..., Ty,
with |x;| = h;. In particular,

m m
1> Bjzjllee < I 1Bjlh;llsos
=0 =0

and equality is attainable.

Proof. (a) The inequality is straightforward. Equality is obtained when
b;; = sign(z;)e;;. (b) The vector inequality is straightforward. Equality is
obtained in the ith component for z;(k) = sign(b!))h;(k), where B; = (b))
The norm results follows easily. ]

Lemma 2.2 If B € R™" and p(B) < 1, then the series Y72, |B*| and
S22 ||BE|| are both convergent, where || - || is any consistent norm.

Proof. Since p(B) < 1, a standard result [18, Lemma 5.6.10] guarantees
the existence of a norm || - ||, for which ||BJ|, < 1. The series 332, [|B*||, <
Yo I BIE = (1 —|IB]|,)~" is clearly convergent, and so, by the equivalence
of norms, 332, || B¥|| is convergent for any norm.

Since (|B*])i; < ||B¥||s, the convergence of 372 || B¥||« ensures that of
S0 |B¥|. (The convergence of 35, | B¥| can also be proved directly using
the Jordan canonical form.) |

3 Forward Error Analysis
The basic equation from which we work is (12), which we write as

err1 = Gey, + M1&, (13)
where G = M~!'N and

& = AMy1Z1 — fi (14)

A componentwise bound for & is, from (8) and (9),

(6| < dnu([M]|Zpia] + [N][Z5] + [0]) = s (15)
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where d,, = max(cy,, c,), and this bound is sharp modulo the multiplicative
constant d,,, as we now explain. Note that each element of M, N and b takes
part in at least one floating point operation. Using Lemma 2.1 (a) it is easy
to see that if we associate with each element of M, N and b a single rounding
error of maximal modulus and the appropriate sign, equality is attained in
(8), (9) and (15), modulo the multiplicative constants ¢,, ¢, and d,,. In other
words, there exists a set of rounding errors for which there is equality in (15)
if we ignore the constant d,,.
Now we return to the recurrence (13), which has the solution

Cmt+1 = Gm+160 + Z GkM_lém_k.
k=0

The first term, G™* ey, is the error of the iteration in exact arithmetic. This
term tends to zero as m — oo, since p(G) < 1, so Lemma 2.1 (b) shows that
each component of the following inequality is sharp for large m:

lemi] < 1G™eo| + 3 IGMM ™ s, (16)
k=0
where py is the sharp bound for & defined in (15). As m — oo the accuracy
that can be guaranteed by the analysis is determined by the last term in
(16), and it is this term on which the rest of the analysis focuses.
At this point we can proceed by using further componentwise inequalities
or by using norms. First, we consider the norm approach. In place of (16)
we use the normwise bound

||em+1||oo < ||Gm+160“oo + H Z |GkM_1| Hm—k Hom (17)
k=0

which is sharp for large m, in view of Lemma 2.1 (b). Defining

= 1Tkl
Yz = SUp )
bl

we obtain from (17) and (15)
lemtilloe < HGmHeoHoo+Og}fg§nHukHool§HGkM_lHoo

< 16" eolloo + dnu(l +92) (1M [loo + [N o) 2]l D 1G*MTHLS)

k=0
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where the existence of the sum is assured by Lemma 2.2, since p(G) < 1.
This is similar to a result in the analysis of Wozniakowski [26] (see (3.11)
and (3.12) therein). Wozniakowski’s result has ||z|| in place of sup ||Zk||
(i.e., 7 = 1), which we believe is erroneous, despite an extra “+O(u?)”
term. (Like (18), the bounds for the SOR iteration in [12] also contain a
factor supy, ||Zx|.) Also, Wozniakowski’s bound contains ||G*|| rather than
|GEM~1|; this is because he assumes T is computed as

Tre1 = fU(HZp+h) = (HHAH)Z+h+Ah,  ||AH|| < coul|H||, |JAR|| < ¢ ul|h].
(19)
Comparison with (6)—(9) shows that (19) is not valid if the iteration is im-
plemented in the natural way described in section 2. Wozniakowski assumes
that the vectors &, (defined slightly differently in his analysis) are arbitrary
subject to a bound on ||&||, and by taking the & to be eigenvectors of G
he shows that his bound analogous to (18) is sharp when G is symmetric.
However, under our assumptions on how zy,1 is computed, & satisfies (15),
and the structure imposed by this inequality may preclude &, from being an
eigenvector of G. (Moreover, G is almost always unsymmetric for the SOR
method). The bound for ||, +1]|o in (17) cannot be weakened without losing
the sharpness.
If |Glloo = |[M7'N||eo = ¢ < 1 then (18) yields

m 1M~ oo
lemialleo < IG™ eolloo + dnu(l+72) (1M [|oo + [N [loo) |2]loc™5— =

Thus if ¢ is not too close to 1 (¢ < 0.9, say), and ~, and |[|[M ||« are not
too large, this bound guarantees a small forward error.

Of more interest for us is the following componentwise development of
(16). Defining

_ |
6, = sup max ( ) (20)
so that |Zg| < 6,|z| for all k, we have from (15),
|| < dpu(1+ 0,)(|M] + [N])|]. (21)
Hence (16) yields
lemi1| < |G eo| + dyu(l + 6,) Z |GEM ™) (|M]| + [N])|2|. (22)
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Again, the existence of the sum is assured by Lemma 2.2, since p(G) =
p(M™N) < 1. Since A= M — N = M(I — M~'N) we have

A7l = (i(M‘lN)’“)M‘l.

k=0

The sum in (22) is clearly an upper bound for |A~!|. Defining c¢(A) > 1 by
c(A) =minfe: Y |(MT'N*M <D (MTINM | =elA7}, (23)
k=0 k=0

we have our final bound
lemi1| < |G leg| + dnu(l + 0,)c(A)ATH(IM| + |NT)|z|. (24)

Unlike (16), this bound is not sharp in general, but it is optimal in the sense
that it is the smallest bound that can be used to assess the componentwise
forward stability.

An interesting feature of stationary iteration methods is that if the ele-
ments of M and N are linear combinations of those of A, then any scaling
of the form Az = b — DyAD,y- Dy'z = Dy'b (D; diagonal) leaves the eigen-
values of M !N unchanged; hence the asymptotic convergence rate is inde-
pendent of row and column scaling. This scale independence applies to the
Jacobi and SOR iterations, but not, for example, to the stationary Richard-
son iteration, for which M = I. One of the benefits of doing a componentwise
analysis is that under the above assumptions on M and N the bound (24)
largely shares the scale independence. In (24) the scalar ¢(A) is independent
of the row and column scaling of A, and the term |A~1|(|M|+|N|)|z| scales in
the same way as x. Furthermore, 6, can be expected to depend only mildly
on the row and column scaling, because the bounds in (8) and (9) for the
rounding error terms have the correct scaling properties.

What can be said about ¢(A)? In general, it can be arbitrarily large.
Indeed, ¢(A) is infinite for the Jacobi and Gauss-Seidel iterations for any
n > 3 if A is the symmetric positive definite matrix with a;; = min(z, j),
because A1 is tridiagonal and (M~1N)*M~! is not.

If M~ and M~!'N both have nonnegative elements then c¢(A) = 1; as we
will see in the next section, this condition holds in some important instances.

Some further insight into ¢(A) can be obtained by examining the cases
where M !N has rank 1 or is diagonal. The rank 1 case is motivated by
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the fact that if B € IR"*"™ has a unique eigenvalue \ of largest modulus then
B* ~ Xexy” where Bx = Mz and y’B = \y” with y"2 = 1. If we set
(M7INYM =t = NegyT M~1 = Neaz | where |A| < 1, then

c(A) = min{e: S Mz <e| Y NaT|},

k=0 k=0

or 300 0 |NF| = c(A)| 52, AF|, that is, (1 —|A))™! = ¢(A)(1 — \)~!. Hence
c(A) = (1 = N)/(1 —|)]), and so ¢(A) is of modest size unless M !N has
an eigenvalue close to —1. If M~!N € C™" is diagonal with eigenvalues
A; then it is easy to show that c(A) = max; |1 — N|/(1 — [\]), so ¢(A)
can be large only if p(M~'N) is close to 1. Although M~'N cannot be
diagonal for the Jacobi or Gauss-Seidel methods, this formula can be taken
as being indicative of the size of ¢(A) when M~!'N is diagonalizable with
a well-conditioned matrix of eigenvectors. These considerations suggest the
heuristic inequality, for general A,

1=\
c(A) > ma | d

In practical problems where stationary iteration is used we would expect
c(A) to be of modest size (O(n), say), for two reasons. First, to achieve a
reasonable convergence rate p(M~'N) has to be safely less than 1, which
implies that the heuristic lower bound (25) for ¢(A) is not too large. Second,
even if A is sparse, A~! will usually be full, and so there are unlikely to be
zeros on the right-hand side of (23). (Such zeros are dangerous because they
can make c¢(A) infinite.)

Note that in (24) the only terms that depend on the history of the itera-
tion are |G™leg| and 6,. In using this bound we can redefine z to be any
iterate Ty, thereby possibly reducing 6,. This is a circular argument if used
to obtain a priori bounds, but it does suggest that the potentially large 6,
term will generally be innocuous. Note that if z; = 0 for some ¢ then 6, is
infinite unless (Zy); = 0 for all k. This difficulty with zero components of x
can usually be overcome by redefining

((IM] + INDIZ]);
QI:Sup max 27
k 1<i<n ((|M]+ |N|)|x]);

for which the above bounds remain valid if 6, is replaced by 26,.
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Finally, we note that (24) implies
lemrilloe < IG™eolloc + dntu(1 + O )e(A) AT (1M + [Nz |- (26)

If 0.c(A) = O(1) and | M|+ |N| < alA|, with a = O(1), this bound is of the
form (5) as m — oo and we have componentwise forward stability.

4 Forward Error Bounds for Specific Meth-
ods

In this section we specialize the forward error bound (26) of the previous
section to the Jacobi, Gauss-Seidel and SOR iterations.

4.1 Jacobi’s Method

For the Jacobi iteration M = D = diag(A) and N = diag(A) — A. Hence
|M|+ |N| = |M — N| = |A|, and so (26) yields

lemilloo < NG™ eolloo + dnu(l + 02)e(A) | JAT[JAllz] [l (27)

If Ais an M-matrix then M~ > 0 and M~'N > 0, so ¢(A) = 1. Hence
in this case we have componentwise forward stability as m — oo if 6, is
suitably bounded.

Wozniakowski [26, Example 4.1] cites the symmetric positive definite ma-
trix

1 142
» 0<a<g, ma(d)= 1+ & p(MTIN) = 2,
—a

A:

Q2

a
1
a

— Q2 2

as an example where the Jacobi method can be unstable, in the sense that
there exist rounding errors such that no iterate has a relative error bounded
by ¢nkoo(A)u. It is interesting to compare our bound (27) with the observed
errors for this example. Straightforward manipulation shows that if a =
1/2 — € (e > 0), then c¢(A) = (3¢)7!, so ¢(A) — oo as € — 0. (The heuristic
lower bound (25) is ~ 3(2¢)~! in this case.) Therefore (27) suggests that the
Jacobi iteration can be unstable for this matrix. To confirm the instability
we applied the Jacobi method to the problem with z = (1,1,...,1)7 and
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Table 1: Jacobi method, a = 1/2 — 87/

p(M™IN) Tters. condy(A,z) ming ¢oo(Ty) ming 7. (T)
j = 0.75 90 3.40 2.22e-16 1.27e-16
j=2 0.97 352 4.76 1.78e-15 9.02e-16
= 0.996 1974 4.97 1.42e-14 7.12e-15
j =4 1.00 11226 5.00 1.14e-13 5.69e-14
j = 1.00 55412 5.00 9.10e-13 4.55e-13

Table 2: Jacobi method, a = —(1/2 — 877)

p(MIN) Tters. conde(A,z) ming ¢oo(Tr) ming 7.0 (Ts)
Jj= 0.75 39 7.00 4.44e-16 5.55e-17
J= 0.97 273 6.30el 4.88e-15 7.63e-17
Jj=3 0.996 1662 5.11e2 4.22e-14 8.24e-17
Jj= 1.00 9051 4.09e3 3.41e-13 8.32e-17
j=05 1.00 38294 3.28e4 2.73e-12 8.33e-17

a =1/2—-877 5 = 1:5. We used Matlab, for which the unit roundoff
u ~ 1.1 x 1071% and we took a random xy with ||z — x| = 1071°. The
iteration was terminated when there was no decrease in the norm of the
residual for 50 consecutive iterations. Table 1 reports the smallest value of
Ooo(Tr) = || — ZTk||oo/||Z||cc OVer all iterations, for each j; the number of
iterations is shown in the column “Iters.”

The ratio ming ¢oo (T ) j+1/ Ming oo (T ); takes the values 8.02, 7.98, 8.02,
7.98 for j = 1:4, showing excellent agreement with the behaviour predicted
by (27), since ¢(A) ~ 8 /3. Moreover, 6, ~ 1 in these tests and setting d,, ~ 1
the bound (27) is at most a factor 13.3 larger than the observed error, for
each j.

If —1/2 < a <0 then A is an M-matrix and ¢(A) = 1. The bound (27)
shows that if we set @ = —(1/2 —877) and repeat the above experiment then
the Jacobi method will perform in a componentwise forward stable manner
(clearly, 6, ~ 1 is to be expected). We carried out the modified experi-
ment, obtaining the results shown in Table 2. All the ming ¢ (Zx); values
are less than cond., (A, x)u, so the Jacobi iteration is indeed componentwise
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forward stable in this case. Note that since p(M~'N) and |[M~*N||, take
the same values for @ and —a, the usual rate of convergence measures cannot
distinguish between these two examples.

4.2 Successive Over-Relaxation

The SOR method can be written in the form Mz, = Nxy + b, where

M=YDtwr), N=2(1-wDb-w,
w w

and where A = D + L + U, with L and U strictly lower triangular and
upper triangular, respectively. The matrix |M| + |N| agrees with |A| every-
where except, possibly, on the diagonal, and the best possible componentwise
inequality between these two matrices is

1+ 1

a8 < P9 = aal, (28)

Note that f(w) =1 for 1 <w <2, and f(w) — 0o as w — 0. From (26) we
have

lem+illoo < 1G™ eolloo + dntu(l + 02)e(A) f(w) | AT A]|2] |-

If Ais an M-matrix and 0 < w < 1 then M~' > 0 and M~'N > 0,
so ¢(A) = 1. The Gauss-Seidel method corresponds to w = 1, and it is
interesting to note that for this method the above results have exactly the
same form as those for the Jacobi method (though ¢(A) and 6, are, of course,
different for the two methods).

5 Backward Error Analysis

In this section we obtain bounds for the residual vector r, = b — AZ,. We
write (11) as

Tk11 = HTk + ([ — H)fk,
where H = NM~" and & is defined and bounded in (14) and (15). This
recurrence has the solution

1 = H™ g + 37 HY I = H)&poy. (29)
k=0
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Using the same reasoning as in the derivation of (17), we obtain the sharp
bound

Irmilloe < IH™ rolloo + 1 D2 THH(I = H)| i lloc,
k=0

where (i, is defined in (15). Taking norms in the second term gives, simi-
larly to (18),

Irmilloe < IHH™ 7ol + dnte(1 +52) (1M [loo + | N]loo) [H ool ]|oc, - (30)

where

H = 3 |H (1 - ).

k=0

The following bound shows that || H || is small if ||H|s = ¢ < 1, with ¢ not
too close to 1:

= = 11 — Hlw
[Tl < 12 = Hllow 3 11, = 2l
k=0 —4q

A potentially much smaller bound can be obtained under the assumption
that H is diagonalisable. If H = XDX !, with D = diag()\;), then

ﬁ _ Z’X(Dk_DkJrl)Xfl’
k=0

< IX](X diag(|1 — Aif[AF)) X

k=0
B A e AT
= |X|d1ag(1 — |)\i|)|X .
Hence
- 11— A
e < oo X) max T3 (31)

Note that \; = N\ (H) = Mi(NM~1) = X\;(M~1N), so we see the reappearance
of the term in the heuristic bound (25). The bound (31) is of modest size
if the eigenproblem for H is well-conditioned (ko (X) is small) and p(H) is
not too close to 1. Note that real eigenvalues of H near +1 do not affect the
bound for ||H||s, even though they may cause slow convergence.
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To summarise, (30) and (2) show that for large m the normwise backward
eITor 7)oo (T, ) is certainly no larger than

[ M ||oo + [|V]] o0
1Al

dyu(1 4 7,) I

Note that || M ||oo+||V]|eo < 2|| Ao for the Jacobi and Gauss-Seidel methods,
and also for the SOR method if w > 1.
To investigate the componentwise backward error we use the bound, from

(29),

[P < [H™ ol + 3 [HH(I — H)|ptyn-s.
k=0
Lemma 2.1 (b) shows that there can be equality in any component of this
inequality, modulo the term |H™"ry|. With 6, defined as in (20) we have,
using (21),

[P | < [H™rof + dyu(1 + 0,)H(|M| + |NJ)|z]. (32)

To bound the componentwise backward error we need an inequality of the
form -
(7] < o(A)Y. BT~ H)| = (AL
k=0

Unfortunately, no such bound holds, since H has nonzero off-diagonal ele-
ments unless H = NM~! is diagonal. It therefore does not seem possible to
obtain a useful bound for the componentwise backward error. However, the
bound (32) does have one interesting implication, as we now explain.

Consider any linear equation solver that provides a computed solution
to Ax = b that satisfies

|b — AZ| < uFE|Z|,

where F is a nonnegative matrix depending on any or all of A, b, n and u
(with E'= O(1) as u — 0). Suppose one step of iterative refinement is done
in fixed precision; thus, r = b — AZ is formed (in the working precision),
Ad = r is solved, and the update y = T+ d is computed. Theorem 2.1 of [16]
shows that ¥y satisfies

[b— Agl < ca(|AllF] + [B]) + O(u?). (33)
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Theorem 2.2 of [16] shows further that if E = E|A|, and 2|| |A||A™|||cco (A, 9) (|| E|| o+
n+2)%/(n+1) <u™', where (A, ) = max;(|A||z|);/ min;(|A||z|);, then

b — Ay| < 2(n+ 2)ulAl|y]. (34)

The bound (33) shows that iterative refinement relegates £ to the second
order term, yielding asymptotic componentwise stability; but, since it is only
an asymptotic result no firm conclusion can be drawn about the stability.
Under further assumptions (that A is not too ill-conditioned, and that the
components of |A||g] do not vary too much in magnitude) (34) shows that
the componentwise backward error is indeed small.

If m is so large that H™'ry can ignored in (32), then we can apply these
results on fixed precision iterative refinement with E = d,(1 + 6,)H(|M| +
IN|) and E = ~d,(1 + 6,)|H|, where v = 1 for the Jacobi and Gauss-
Seidel methods, and v = f(w) in (28) for the SOR method. We conclude
that even though the basic iterative methods are not guaranteed to produce
a small componentwise backward error, one step of iterative refinement in
fixed precision is enough to achieve this desirable property, provided the
iteration and the problem are both sufficiently “well-behaved” for the given
data A and b. When A and b are sparse o(A,x) can be very large; see
[1] for a discussion of the performance of iterative refinement in this case.
Of course, in the context of iterative solvers, iterative refinement may be
unattractive because the solution of Ad = r in the refinement step will in
general be as expensive as the computation of the original solution . We note
that iterative refinement is identified as a means of improving the normwise
backward error for iterative methods in [19].

To conclude, we return to our numerical examples. For the SOR example
in section 1, ¢(A) = O(10%) and ||H||o = O(10%"), so our error bounds for
this problem are all extremely large. In this problem max; [1—X;|/(1—|X\;|) =
3, where \; = \;(M~'N), so (25) is very weak; (31) is not applicable since
M~IN is defective.

For the first numerical example in section 4.1, Table 1 reports the min-
imum normwise backward errors 7., (Zx). For this problem it is straightfor-
ward to show that ||H||. = (1 —¢€)/e = 8(1 — 877). The ratios of back-
ward errors for successive value of j are 7.10, 7.89, 7.99, 8.00, so we see
excellent agreement with the behaviour predicted by the bounds. Table 2
reports the normwise backward errors for the second numerical example in
section 4.1. The backward errors are all less than u, which again is close
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to what the bounds predict, since it can be shown that [[H|, < 23/3 for
—1/2 < a <0. In both the examples of section 4.1 the componentwise back-
ward error w(Zk) & 1o (Tk), and in our practical experience this behaviour is
typical for the Jacobi and SOR iterations.
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