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Abstract. Existing definitions of backward error and condition number for linear systems do not
cater to structure in the coefficient matrix, except possibly for sparsity. The definitions are extended
so that when the coefficient matrix has structure the perturbed matrix has this structure too. It is
shown that when the structure comprises linear dependence on a set of parameters, the structured
componentwise backward error is given by the solution of minimal cx)-norm to an underdetermined
linear system; an explicit expression for the condition number in this linear case is also obtained.
Applications to symmetric matrices, Toeplitz matrices and the least squares problem are discussed
and illustrated through numerical examples.
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1. Introduction. A backward error of an approximate solution y to a square
linear system Ax b is a measure of the smallest perturbations AA and Ab such that

(A + AA)y b + Ab.

Backward error has two distinct uses. First, it can be compared with the size of any
uncertainty in the data A and b to ascertain whether y solves a problem sufficiently
close to the original one. Second, by invoking perturbation results a bound can be
obtained on the forward error y- x in terms of the backward error and an appropriate
condition number.

Two classes of backward error definition are in current use, corresponding to
different ways of measuring the size of the perturbations AA and Ab. The most
familiar is the normwise backward error

(1.1) (y) min{ (A + AA)y b + Ab,

in which I1" denotes any vector norm and the corresponding subordinate matrix
norm, and the matrix E and the vector f are arbitrary. Rigal and Gaches [19] derive
the explicit expression

(1.2)

where r b- Ay; they also show that the minimum in (1.1) is achieved by the
perturbations

(1.3) AAmin [[Eli [lYll + [[f[I ?’ZT’ Abmin --[[E[[ ][Y[I + [Ifl[
r,
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where z is a vector dual to y, that is,

zTY
For the particular choice E A and f b, r(y) is called the normwise relative
backward error. The classic backward error analyses of Wilkinson [24], [25] for lin-
ear equation solvers provide bounds on the normwise relative backward error of
computed solution.

A more stringent measure of backward error results if the components of the
perturbations AA and Ab are measured individually, rather than together in a norm.
This way we obtain the componentwise backward error

(1.4) w(y)

where E _> 0 and f _> 0 contain arbitrary tolerances, and inequalities between matrices
hold componentwise. The current trend of using componentwise error analysis and
perturbation theory began with the 1979 paper of Skeel [20]. However, component-
wise backward error was introduced and studied much earlier in a 1964 paper of Oettli
and Prager [18]. Oettli and Prager obtained the explicit formula

(1.5) w(y) max
in which /0 is interpreted as zero if 0 and infinity otherwise. (A short proof of
(1.5) is given in [15] and [20].) Perturbations that achieve the minimum in (1.4) are

(1.6) /kAmin blED2, /kbmin -Dlf
where 91 diag(ri/(Z[y + f)) and 92 diag(sign(y)).

One reason for the current interest in componentwise backward error is that it
provides a more meaningful measure of stability than the normwise version when the
elements of A and b vary widely in magnitude. The most common choice of tolerances
is E- IAI and f -Ibl, which yields the componentwise relative backward error. For
this definition, zeros in A and b force zeros in the corresponding entries of AA and Ab
in (1.4), and so if w(y) is small, then y solves a problem that is relatively ,close to the
original one and has the same sparsity pattern. Another attractive property of the
componentwise relative backward error is that it is insensitive to the scaling of the
system" if Ax b is scaled to (SIAS2)(Slx) Sb, where S and $2 are diagonal,
and y is scaled to Sly, then w remains unchanged. Recent work that makes use of
componentwise backward error includes [1], [2], [13], [15], [16].

There are situations where even the componentwise backward error is not entirely
appropriate, because it does not respect any structure (other than sparsity) in A or
b. For example, if A is a Woeplitz matrix and (y) and w(y) are small, it does not
necessarily follow that y solves a nearby Toeplitz system, since AA in (1.1) or (1.4)
is not required to be a Toeplitz matrix. Indeed, AAmin in (1.3) or (1.6) is clearly
not Toeplitz in general. Similar remarks can be made about condition numbers: the
standard condition numbers are derived without requiring that perturbations pre-
serve structure, hence they generally exceed the actual condition number for a linear
system subject to structured perturbations. See Bunch [4] or Van Dooren [22] for
more detailed discussion of the desirability of preserving matrix structure in defini-
tions of backward error; Van Dooren also discusses structured condition numbers and
describes various structured linear algebra problems that arise in signal processing.
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In this work, we extend the notions of componentwise backward error and con-
dition number to allow for dependence of the data on a set of parameters. In 2 we
define the structured componentwise backward error and show how to compute it when
the dependence is linear. In 3 we define a structured condition number that measures
the sensitivity of a linear system to structured perturbations measured component-
wise. We derive an explicit expression for the condition number in the case where the
parametrization of the data is linear.

In 4 we examine applications involving symmetric matrices, Toeplitz matrices,
and the least squares (LS) problem. In particular, we explain why, when perturba-
tions to a symmetric matrix are measured using the 2-norm, it makes little difference
to the backward error or condition number whether the perturbations are required
to preserve symmetry or not. For most algorithms for solving structured linear sys-
tems little is known about the size of the structured backward error of the computed
solution. Some insight can be gained by computing the structured backward error
in specific instances, as we illustrate with numerical examples in 5. We give some
suggestions for further work in 6.

2. Structured componentwise backward error. Consider an approximate
solution y to the linear system Ax b, where A E lRnn and b E ]Rn. Suppose A
belongs to a set S c_ IRn whose members depend on t real parameters (t <_ n2);
we write this dependence as A A[p] where p lRt. We assume that b does not
exhibit any such structure, although the analysis below could be modified to allow for
structure in b. (An example of a problem where b has structure is the Yule-Walker
Toeplitz system [9, p. 184] in which b depends on the same parameters as A.)

Given nonnegative vectors of tolerances g ]R and f ]R, we define the
structured componentwise backward error

(2.1) it(y) min{e (A + AA)y b + Ab, A + AA Alp + Ap],
lap[

_
This definition differs from that of the componentwise relative backward error in two
respects: we require A + AA S, so that A + AA has the same structure as A, and
we measure the size of the perturbation to A using Ap rather than AA. If S IR
then it(y) w(y), assuming g and p comprise the elements of E in (1.4) and A,
respectively.

The following transformation removes the absolute values from the constraints in
the definition of it(y) and replaces the inequalities by equalities. Let

(2.2) Ap Dlv, Ab D2w,

where D1 diag(gi), D2 diag(fi). Then the smallest e satisfying IApl _< eg and
IAbl <_ ef is max{llvll Ilwll}, and so

Iv] (A + AA)y b + Ab, A + AA Alp + Ap],

(2.3) Ap Dlv, Ab- D2w}.
In general, this equality constrained nonlinear optimization problem has no closed
form solution (and it will have no solution at all if the constraints cannot be sat-
isfied). We therefore concentrate on the special case where S is a linear subspace
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of IRnxn. Several classes of matrices of interest fall into this category, such as
symmetric, Toeplitz, circulant, and Hankel matrices. Note that linearity implies
AA (A + AA) A E S. Furthermore, if each element of A is equal to a single
element of p, that is, aij Pk, then we have the equivalence

(2.4) lap[ < eg == IAAI <_ eE,

where eij gk; we will use this equivalence below.
Defining r b-Ay, the equation (A+AA)y b/Ab may be written AAy-Ab

r, or more usefully, yTAAT AbT rT, which places the variables AA to the right
of the constant vector y. Applying the vec operator (which stacks the columns of a
matrix into one long vector), we obtain

(2.5) (In (R) yT)vec(AAT) Ab r,

where (R) denotes the Kronecker product (see [17, Chap. 12] for properties of the vec
operator and the Kronecker product).

By linearity we have

(2.6) vec(AAT) SAp

for some B E lRnt which we assume to be of full rank.
Using (2.6) and (2.2)we can rewrite (2.5) as

or, with Y In (R) yT,

(In (R) yT)BDlv D2w r,

(2.7) [YBD1, -D2] [ V r.

This is an underdetermined system of the form Cz r, with C ]Rnx(t+n) and we
seek the solution of minimal cx>norm, the minimal value being #(y).

Note that in the case where t n2 and B I, the rows of C are "structurally
independent," that is, there is at most one nonzero per column. Our minimization
problem breaks into n independent problems of the form: minimize Ilxll subject to
aTx a (which has the solution x (a/llalll)sign(a)). It is easy to see that we
recover the Oettli-Prager formula (1.5).

If C is rank-deficient, then there may be no solution to Cz r, in which case
the structured componentwise backward error #(y) may be regarded as being infinite.
Assume, therefore, that C has full rank. If CT has the QR factorization

then Cz -r may be written

[1 ] RTI"=-

Thus R-Tr is uniquely determined, and
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Choosing 2 to minimize Ilzll is equivalent to solving an overdetermined linear sys-
tem in the oo-norm sense, for which several methods are available [23, Chap. 2], [6].

We can obtain an approximation to the desired cx>norm minimum by minimizing
in the 2-norm, which amounts to setting 2 0 (and which yields z C+Tr, where
C+ is the pseudo-inverse of C). In view of the fact that n-1/211xl12 <_ Ilxll <_ Ilxl12
for x E ]Rn, it follows that

(2.8) ,() < () _= < /t + n u().

How does the structured componentwise backward error It(y) compare with the
standard componentwise backward error w(y)? If we assume that (2.4) is valid and
that E and f are the same for both backward errors then, clearly, It(y) _> w(y). More
interestingly, if there are zeros in E and f, It(y) can be infinite when w(y) is finite.
The reason is that there are more free parameters in the definition of w(y) than in that
of It(y) and zeros in E or f reduce the number of free parameters in both definitions--
potentially by enough for there to exist feasible perturbations AA and Ab for w(y)
but not for It(y). Indeed, note that zeros in E and f introduce zero columns in C,
making C more likely to be rank-deficient.

Two simple examples help to illustrate the points discussed above. Consider the
system with

A= b= Y= l+e

where e > 0, and let E IA[, f 0 in (1.1), (1.4), (2.1) and (2.4). It is easy to check
that

’()
1 + ’ () 1,

and for symmetric structure, It(y) oc. If we alter A, b, and y to

e Y= 1

we find that

() e ma(, )’ () + ’ ’() 1,

which shows that even when the structured backward error is finite it can be arbitrarily
larger than the normwise and componentwise backward errors.

It is of interest to characterize when C has full rank, as this guarantees that It(y)
is finite. C is certainly of full rank if f has no zero elements, because then D2 is
nonsingular, but little more can be said about the rank of C in general.

Finally, we note that if C has full rank, then

,() < ()= IIc+ll
< IIc+rll < IIc+llllll

(Tmin(C)-i IIr[[2,
where (Tmi denotes the smallest singular value. This inequality will often be a reason-
able approximation and so it would be useful to determine the behavior of amin(C)
as B and y vary. Unfortunately, the rectangularity of B and Y makes it difficult to
obtain any results in this direction.
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3. Structured condition number. With the same notation as in 2, we define
the structured condition number

AA)(x Ax) b Ab,condo (A, x) lim sup (A

(3.1) A + AA Alp + Ap], IApl <_ g, IAbl <_ f}.
This definition employs the same class of perturbations as in the definition of the
structured componentwise backward error #(y), and so we have the perturbation
result, for any y,

IlY x]loo _< condoo (A, x)#(y) + O(#(y)2).

(Strictly, this result requires that IIAplloo O(e) = IIAAIIoo O(e); otherwise the
order term has to be weakened to o(#(y)).)

An explicit expression for condoo (A, x) can be derived in the case where A depends
linearly on its parameters. For a given e and perturbed system in the definition of
condoo(A, x), we have

(A + AA)Ax Ab- AAx,

which yields

(3.2)
Ax A-X(Ab- AAx- AAAx)

A-lAb A-1AAx + O(e2).

First, we analyze the term A-AAx. We have

AAx vec((AAx)T)
vec(xTAAT)

---(In xT)vec(AAT)
XBAp,

where we have used (2.6) and defined X In (R) xT. Since IApl < eg, it follows that

IA-1AAxl ]A-IXBAp] <_ elA-1XBIg.

Similarly,

IA-Xmbl < lA-11f.
Taking norms we obtain

(3.3) A-1AAx + A-X/Xbll <- 111A-XBI9 + IA-If I1.
It is easy to see that equality is attainable in (3.3) for suitable choice of Ap and Ab.
It follows from (3.2) and (3.3) that

Ilaxll < A-xXBIg + A-x If I1 +llxll Ilxll



168 STRUCTURED LINEAR SYSTEMS

is a sharp bound, and hence

(3.4) condc,,:,(A, x)
IA- XBIg + IA-11f

Ilxll 
In the special case where no structure is imposed (B I2), this expression can

be written in the form

(3.5) cond’ (A, x) IA- IEIxl + [A- If

where E is defined in (2.4); this is a generalization of a condition number of Skeel
[20], as described in [1], [15]. It is possible for condO(A, x) to exceed condc(A, x) by
an arbitrary factor. However, if IA-11f I1 " IA-11EIxl I1 then the two condition
numbers will be of similar magnitude.

More convenient to work with than condo(A, x) is the quantity

where D1 diag(gi) and D2 diag(f). It is easy to show that

-O(A,x) < cond(A,x) < 0(A,x)2

The quantity O(A,x) can be estimated without explicitly forming the matrices
A-IXBD E ]RTM and A-D2 ]Rnn (assuming a factorization of A is avail-
able) by using the method of Hager [10] and Higham [12], [14]; this method estimates
IIC]lo at the cost of forming a few matrix-vector products Cx and CTy.

We also mention two interesting nonlinear structures, those of Vandermonde ma-
trices Y (a-) and Cauchy matrices g ((hi +/3j)-). In [11], explicit expres-
sions are derived for condo(V, x) and condoc(yT, x) in the case where f 0 and
g (1, 1,..., 1)T. In [8] a structured condition number with respect to the inversion
of H is derived.

4. Applications. In this section, we look in detail at the structured component-
wise backward error and structured condition number for three applications--those
involving symmetric matrices, Toeplitz matrices, and the augmented system for a LS
problem.

 n(n+4.1. Symmetric matrices. For the property of symmetry, there are t
i) parameters in the vector p. It is natural to take these parameters to be the elements
in the upper triangle of A, in which case every row of B contains a single nonzero
entry equal to one. To illustrate the form of the underdetermined system (2.7), we
consider the case n 3. It is easy to derive the system without using B. Also, it
is convenient to work with the independent elements of AA rather than Ap, and a
symmetric matrix of tolerances E rather than g (see (2.4)).

The constraint AAy- Ab-- r, that is,

Aa12 Aa22 Aa23 y2 Ab2 r,
Aa3 Aa23 Aa33 y3 Ab3
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is equivalent to the system

Yl Y2 Y3 0 0 0 --1 0 0 ]
(4.1) 0 Yl 0 Y2 Y3 0 0 --1 0

0 0 Yl 0 Y2 Y3 0 0 -1

Aall
Aal2
Aa13
Aa22
Aa23
Aa33

Ab2
Ab3

On using the transformation (2.2) (where Ap- vec(AA)), we obtain the underdeter-
mined system (2.7),

[Y Y2 Y3 0 0 0 -1 0 0] [D1 0(4.2)
[
0 y 0 y2 Y3 0 0 -1 0

j [ 0 D2 j0 0 y 0 Y2 Y3 0 0 -1

Vl

V2

V3
V4

V5
V6
Wl

W2

W3

where D1 diag(e, e2, el3, e22, e23, e33) and D2 diag(f, f2, f3). Note that the
n (n2/2 + 3n/2) coefficient matrix C is upper trapezoidal. Solutions to (4.2) are
easily obtained by inspection, but in general, none of these solutions will be of near
minimal norm.

The special structure of the matrix C enables computation of the QR factorization
of CT in O(n3) operations, by careful use of Givens rotations.

A structured normwise backward error for symmetric matrices has been consid-
ered by Bunch, Demmel, and Van Loan [5]. They consider (y) (see (1.1)) with f 0
and show that enforcing symmetry of AA when A is symmetric does not increase (y)
for the 2-norm, and it increases it by at most a factor x/ for the Frobenius norm.
No such result holds for componentwise backward errors because, as explained in 2,
it is possible for it(y) to be infinite when w(y) is finite. However, we note that in the
special case where E is diagonal, it(y) w(y), because the inequality IAAI _< E in
(1.4) automatically forces AA to be diagonal and hence symmetric.

The result of [5] can be loosely verified using (2.7). If we set all the elements of
f and g to 1 (thus Di It and D2 In), then it(y) differs from (y) for the 2-norm
by at most a factor x/ when B In.. We will assume that y el; this entails no
loss of generality because an orthogonal transformation

(A + AA)y b + Ab Q(A + AA)QT Qy Q(b + Ab)

does not change the class of admissible perturbations or the 2-norms of the pertur-
bations, although it does require g to be multiplied by a factor x/. Comparing
Y I (R) yT with YB, where B corresponds to the symmetry constraint, we find that
they differ only in that Y has extra zero columns. Thus imposing symmetry does not
affect the norm of the minimum cx>norm solution to the system (2.7) when B, D1,
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and D2 are identity matrices, and this confirms the result of [5], to within a factor n.

(The factor n is a consequence of switching from using components to 2-norms.)
A very similar argument shows that when D1 and D2 are identity matrices the

condition number cond2(A, x) is the same when symmetry is imposed as when there
is no structural constraint (cond2 (A, x) is defined as in (3.4) but with the 2-norm
replacing the x>norm). We note that a condition number that respects symmetry
has been derived in a different context by Fletcher [7]. Making statistical assumptions
about the perturbations to a linear system, Fletcher shows that the expected condition
number of a system is changed little by the imposition of symmetry.

To summarize, when perturbations to a symmetric matrix are measured using the
2-norm it makes little difference to the backward error or to the condition number
whether symmetry is enforced or not.

4.2. Toeplit. matrices. Recall that A E lRnxn is a Toeplitz matrix if there
exist scalars {ak n-1}k=-n such that ay aj_, that is,

ao al

a-1 ao "

al-n a-1

an-1

Toeplitz(al_n,..., co,’", an-l).
al
a0

In computing the "Toeplitz componentwise backward error," we have to distinguish
between unsymmetric and symmetric Toeplitz matrices, for which the number of
parameters in A is t 2n- 1 and t n, respectively. As in the previous section, it
is easy to derive the relevant underdetermined system (2.7).

For illustration we again consider the case n 3. It is straightforward to obtain
the following analogues of (4.1), where AA Toeplitz(Aal_n,-.., Aa0,..., Aan_):

Y3 Y2 Y 0 0 --1 0 0
0 Y3 Y2 Yl 0 0 --1 0
0 0 Y3 Y2 Yl 0 0 --1

(4.3) unsymmetric:

Y3 Y2 Y 1 0
(4.4) symmetric: 0 Y3 + Yl Y2 0 --1

Yl Y2 Y3 0 0

Aal
Aao
Aa_l
Aa_2
Abl
Ab2
Ab3

Aa
0 ] Aa0
-1 Abl

Ab
/kb3

Note that the coefficient matrix in (4.3) loses its Toeplitz structure when we
carry out the column scaling necessary to reach (2.7) (cf. (4.2)). Since the number of
columns of C is t/n O(n) in both cases, the cost of computing the QR factorization
of C is no more than O(n3) operations.

Note that if we set f 0, then in the symmetric case the system Cz r reduces
to a square system, corresponding to the fact that the number of parameters in AA
and Ab is the same as the number of equations.
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4.3. The augmented system for the least squares problem. Let A E
]pmxn have full rank n, let b E ]Rm, and let y be an approximate solution to the LS
problem min IIAx- bl12. Suppose we wish to determine the backward error of y, that
is, TLS(Y) or WLS(Y), defined as r(y)in (1.1) or w(y) in (1.4), respectively, but with
the condition (A+AA)y b replaced by the requirement that (A+AA)y- (b+Ab) ]]2
is minimal. Obtaining an explicit formula for YLS(Y) or WLS(Y), or an effective way
of computing these quantities, is an open problem, discussed in [13] and [21]; here
we make some progress on the problem.

Observe that the LS minimizer x satisfies the augmented system

I A

since this is simply a representation of the normal equations. Because this is a square
system, the work in 2 can be exploited. he augmented system h a great deal of
structure; to reflect this in the structured componentwise backward error (), it is
sucient to impose symmetry and to take E (see (2.4)) and f of the form

E= E 0 f=

Let us denote this backward error by LS(r, Y). The main observation of this section
is that PLS(r, Y) respects the structure of the augmented system (unlike 3(r, y) below)
and can be computed using standard methods (as described for p(y) in 2).

A complicating factor is that r in (4.5) is effectively a vector of free parameters,
so to obtain LS(Y) or WLS(Y) we have to minimize LS(r, Y) over all r. Fortunately,
in the applications of interest the naturally arising r is often a good approximation
to the minimizer [16].

In [3] and [131 a "pseudo-componentwise backward error" (r,y) was defined
for the augmented system in which different perturbations are allowed in the two
occurrences of A. This quantity is simply w(y) of (1.4) applied to the augmented
system with

I rl 0

and so an explicit formula is available for it from (1.g). In [16], is proved to be small
after one step of fixed precision iterative refinement, under suitable assumptions, when
a QR factoriation is used to solve the LS problem. Hence it is of interest to compare
gs(r, ) with (r, ) when E IA and fb Ibl. Clearly we have gs(r, ) (r, )
because of the additional symmetry constraint in the definition of gs. We report
some numerical comparisons in the next section.

inally, we note that it is possible to obtain a first-order approximation to the
backward error gs() by considering the perturbed normal equations

( +(+ (+l(b+ ).
Expanding and dropping the second-order terms AA and Ab, we have

AA+&AA Ab-Ab Ar(b- A).

With manipulation similar to tha in 2, this linearied problem can be reduced to
the computation of a minimum -norm solution to an underdetermined system.
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5. Numerical experiments. In the three applications discussed in 3 it is more
expensive to compute #(y) or (y) than to solve the original linear equation prob-
lem (but it is inexpensive to estimate condo(A, x)). Thus, unlike the normwise and
componentwise backward errors (y) and w(y), #(y) is not a quantity that we would
compute routinely in the course of solving a problem. However, tt(y) is useful as a
computational tool for studying the stability of a numerical algorithm for solving a
structured linear equations problem. We describe some numerical experiments involv-
ing the applications of 3.

Our experiments were done using MATLAB, which has a unit roundoff u
2.2 10-16. Computing # involves finding the minimal cx-norm solution to the under-
determined system (2.7). To do this we used the QR factorization transformation to
an overdetermined system described in 2, and solved this system in the cx>norm sense
using the method of [6]. The cost of the method of [6] when applied to min IIAx- bll
is approximately the cost of solving k weighted LS problems min IIB-lAxi -bl12
where k depends mildly on the problem dimensions (typically k <_ 20), and where Bi
is diagonal except for one full column.

In the first test we solved the system Ax b using Gaussian elimination with par-
tial pivoting (GEPP), where A is the 10 10 Hilbert matrix and b (1, 1,..., 1)T/3.
For several E and f, we evaluated the backward errors 7, w, and # for the computed
vector , and the condition numbers cond(A,x) of (3.4) and cond(A,x) of (3.5);
we imposed the constraint of symmetry for # (symmetry is denoted by S in the first
column of Table 5.1). For this matrix GEPP interchanges rows, and so symmetry is
lost in the solution process. We know from standard error analysis that () will be
of order u for E A (assuming there is no undue element growth in the elimina-
tion), irrespective of f, and the result of Bunch, Demmel, and Van Loan referred to
in 4.1 shows that imposing symmetry of AA in (1.1) cannot significantly increase r.
Comparing #() and w(), and cond and condO, in Table 5.1, we see that requiring
symmetry also has little or no effect on the componentwise backward error or the
componentwise condition number in this example.

The reason why the numbers in the first two rows of Table 5.1 are the same is
that IAIIxl is large compared with Ibl and hence it makes relatively little difference to
the formulas (1.2), (1.5), (3.4), (3.5), and the matrix C, whether we take f 0 or

In Table 5.2, A is the symmetric part of a 10 10 matrix with elements from the
random normal (0,1) distribution and b is the same vector as in the first example.
We see that for the computed solution from GEPP, #() -w() in each case; this
behavior is not uncommon. Our limited experience indicates that for well-conditioned,
full symmetric matrices, #() is usually of similar size to w() for the from GEPP.

The next example involves the symmetric positive definite 10 10 Toeplitz matrix
A (pli-jl), with p 1 3 10-5 and b (1, 2,..., 10)T/3. We solved Ax b using
GEPP and the O(n2) operations Levinson algorithm [9, p. 187]. Tables 5.3 and
5.4 report the # values obtained on imposing symmetry or Toeplitz structure alone
(denoted by S or T in the first column), and both symmetry and Toeplitz structure.
In the tables, IIAIIM denotes max,j lajl. Preserving the symmetric Woeplitz structure
raises the backward errors three orders of magnitude. Note also that there is little
difference in the backward errors between the two methods. This example shows that
even when a method specific to Toeplitz systems is used, the computed solution is
not guaranteed to be the solution to a nearby Toeplitz system.

Note that the second plus should be a minus in the expression for c in [9, Algorithm 4.7.2].
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E f

TABLE 5.1
A- Silbert(lO), 2(A)- 1.60e13, GEPP. (El

0
E1

a2(C) cond cond yo() w() #()
Ibl 2.40e0 3.05e12 3.05e12 1.99e-18 2.15e-17 2.18e-17
0 2.40e0 3.05e12 3.05e12 1.99e-18 2.15e-17 2.18e-17
]b] 1.00e0 1.72e6 1.72e6 4.08e-ll 4.08e-ll 4.08e-ll
0 5.17e4 6.63ell 6.63ell 5.82e-18 3.70e-12 3.70e-12

TABLE 5.2
A symm(rand(10)), 2(A) 6.24el, GEPP. (El Idiag(A)[).

E
IAI
IAI 0
o
E1 0

a2(C) cond cond
3.63e0 5.06el 4.79el
3.81e0 4.77el 4.49el
1.00e0 2.97e0 2.97e0
1.35e2 6.50e0 6.50e0

3.81e-17 1.26e-16 1.26e-16
3.87e-17 1.42e-16 1.42e-16
2.33e-15 2.33e-15 2.33e-15
2.11e-16 4.77e-14 4.77e-14

It is perhaps surprising that the increase in the backward error #() between
rows "S," "T," and "S,T" in Tables 5.3 and 5.4 is not matched by a decrease in
condo(A, x). This means, for example, that a smaller forward error bound (equal to
condition number times backward error) is obtained in this example if we do not utilize
the full structure of the problem. Nevertheless, it is not difficult to find examples
where cond (A, x)/condo(A, x) is large for symmetric Woeplitz structure if we set
f 0, which confines perturbations to the .coefficient matrix.

We mention that in all the examples reported the approximation in (2.8) sat-
isfied _< 2#.

In a further experiment we repeated some of the numerical tests from [16], which
involve fixed precision iterative refinement of the LS problem using a QR factorization.
We extended the testing of [16] by evaluating #LS(?, ) in addition to/(’, ), where
#LS and/ are defined in 4.3 and " and are the computed residual and LS solution
(both after refinement), respectively. For [16, problem PR] (in which A is a 4 3
matrix with widely varying row norms) and problem set H (a parametrized set of
problems involving a 6 5 submatrix of the inverse of the Hilbert matrix of order 6),
we found that #LS(?, ) " /(, ) u in every case. Thus we can conclude that in
these examples WLS() =-- min #LS(r, ) U, that is, the computed solution obtained
after iterative refinement is the exact solution to a small componentwise perturbation
of the original LS problem.

6. Concluding remarks. The contribution of this work is to extend existing
definitions of backward error and condition number in a way appropriate to structured
linear systems and to show how these structure-respecting quantities can be computed
in the important case of linear structure. Thus we have derived new theoretical and
computational tools. Several questions merit further investigation:

(1) Are there any nonlinear structures for which #(y) can be computed more effi-
ciently than if it is treated as a general nonlinear optimization problem (for example,
for Vandermonde matrices)?

(2) Is it possible to obtain further theoretical bounds on #(y) that would help us
to understand its behavior?

(3) Standard backward error analysis results for linear system solvers usually
ignore structure. Are there problems and algorithms for which a structured backward
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S
S

S,T
S,T
S,T

TABLE 5.3
A Toeplitz (10), 2(A) 6.50e5, GEPP. (E2 --IIAIIMeeT, f2 Ilbllooe.)

E f 2(C) cond cond
IAI Ibl 1.73e0 1.33e5 1.33e5
[A 0 1.73e0 1.33e5 1.33e5
IA Ibl 1.73e0 1.33e5 1.33e5

IAA 0 1.73e0 1.33e5 1.33e5
ibl 4.28e3 1.33e5 1.33e5

[A[ 0 6.06e3 1.33e5 1.33e5
E2 f2 2.92e3 1.33e5 1.33e5

2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 2.13e-16
2.13e-17 1.07e-16 3.23e-13
2.13e-17 1.07e-16 6.46e-13
2.13e-17 1.07e-16 2.29e-13

TABLE 5.4
A Toeplitz (10), Levinson algorithm. Condition numbers as in Table 5.3.

T
T
S,T
S,T
S,T

E f
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.32e-16
4.07e-17 2.04e-16 2.33e-16
4.07e-17 2.04e-16 4.22e-13
4.07e-17 2.04e-16 8.45e-13
4.07e-17 2.03e-16 3.00e-13

error result can be developed? See [22] for further examples of structured problems.
(4) What can be said about the ratio cond(A,x)/cond(A,x) for particular

structures and choices of tolerances, that is, how much can the imposition of structure
change the condition number? We have answered this question in a particular case
involving the property of symmetry.
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Analysis Group at the University of Toronto, for their hospitality.
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