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Summary.  The H61der p-norm of an m • n matrix has no explicit representation 
unless p = 1, 2 or ~ .  It  is shown here that  the p-norm can be estimated reliably in 
O(mn) operations. A generalization of the power method is used, with a starting 
vector determined by a technique with a condition est imation flavour. The algo- 
r i thm nearly always computes  a p-norm estimate correct to the specified accuracy, 
and the estimate is always within a factor n ~ - l/p of t[ A lit As a by-product ,  a new 
way is obtained to estimate the 2-norm of a rectangular matrix; this method is more 
general and produces better estimates in practice than a similar technique of Cline, 
Conn  and Van Loan. 
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1 Introduction 

Four  matrix norms are commonly  used in scientific computing:  the 1, 2 and 
oo-norms and the Frobenius  norm. The first three are particular cases of the 
H61der p-norm 

Ilhl[p = max I[axllp, A~]Rm• 
x*o Ilxllp 

where p > 1 and Ilxllp = (~7=1 IxilP) I/p. For  p = 1, ov the norm is given explicitly 
in terms of the elements of A by 

I[a[l| = max ~ ]aij[, I[hllx = I[ATII| 
l ~ i ~ m  j = l  

and the 2-norm has the characterisation [I A II 2 = p(ATA) ~/2, where p denotes the 
spectral radius. N o  such formulas for II A II p are known for other values of p, and 
how best to estimate or compute  [I A [[ p is an open question that  we address in this 
work. 

The problem of comput ing  II A lip is of  interest for several reasons. First, it has 
connections with matr ix  condition number  est imation [15]. As a by-product  of this 
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work we obtain a new way to estimate 1[ A I12 as well as further insight into the 
condition number estimator used in LAPACK. Second, p-norms are well-studied 
in approximation theory and various algorithms have been developed for approx- 
imation in the p-norm [7, 22, 23, 32]. The ability to compute the p-norm of a matrix 
may be useful in this context; for example, one may wish to compute the relative 
residual [I b - A x  lip~( I[ A 1[ p I[ x I1 p) for an approximate Ip solution to an overdeter- 
mined system. Further motivation for this work is that we have occasionally found 
it inconvenient that MATLAB's built-in function norm [24] is unable to compute 
II A[I p if p :~ 1, 2, or oo, although it will compute I1 x IIp for all p __> 1. Using the 
algorithms developed here we have written a MATLAB M-file pnorm.m that 
overcomes this limitation (see Appendix); this M-file has the desirable property that 
it works with a sparse matrix argument in MATLAB 4.0 [9]. 

We will assume throughout that vectors and matrices are real. All our algo- 
rithms are valid for complex matrices if transposes are changed to conjugate 
transposes, but the convergence results from [2] and [3] described in Sect. 2 have 
been proved only for real A. 

Before considering the numerical computation of IIA Itv we summarise some 
useful theoretical results about the p-norm. A fundamental inequality for vectors is 
the Hrlder  inequality 

1 1 
(1.1) x Ty  <= ] lxl lpl lyl lq,  - + -  = 1 . 

p q 

This is an equality when p ,q  > 1 if the vectors ( I x ~ f )  and ( ly ,  I a) are linearly 
dependent and sign(x~yi) is constant for all i; equality is also possible when p = 1 
and p = oo, as is easily verified. For a general vector norm II �9 II the dual norm is 
defined by 

zTx  
(1.2) II x IIo -- max - - .  

z,O Ilzll 

It follows from the Hrlder  inequality that the dual of the p-norm is the q-norm, 
wherep-1  + q - 1  = 1. 

How much two H61der norms of a vector can differ is shown by the attainable 
inequalities [8, p. 28], [11, Lemma 1.1] 

( ' )  
I _ Z  Ilxllp2, p a < p 2 .  (1.3) Ilxll~ < [Ixllp, < n ~ 

Using (1.3), and (1.13) below, one can derive the upper bounds in 

(1.4) max II h (:, j)I[ ~ =< I1 a 11 p _-< n x - x/~ max II A ( :, j )  II ~, 
J J 

(1.5) max [IA(i,:)l[p/r <= I[A][p<=ml/Pmax lia(i,:)llp/r 
i i 

where we have used MATLAB-style indexing notation, as in [12]. 
Matrix norms can be compared using the following elegant result of Schneider 

and Strang [28] (see also [20, p. 303]): if II �9 II~ and [l" IIp denote two vector norms 
and the corresponding subordinate matrix norms, then for A ~ Nm• 

[ IAI[~=(  max [[x[l~'~( max []x[[p'~ 
(1.6) m a x ~  \o ,x~R"  I[xll~] , ,o.x~R o ~ , ] "  
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From (1.3) and (1.6), we have, when m = n, 
/ 1 1 

II a l ip ,  ~min(pl,p2) max(pl, P2)) (1.7) max = n 
A , 0  t l A  IIp~ 

Note  that, unlike for vectors, Pl < P2 does not imply II A I[p~ > [I A IIp~. The result 
(1.7) implies, for example, that for all p __> 1 

II A ll~ = n ~ _ ~:~ 
(1.8) n f : i7 )  < [IAtlp < l tAll l ,  

(1.9) HAII2 < [[hllp < n  Ix/p-l/2111AII2. 
n i l ~ p - i / 2 1  = = 

Upper  bounds for II AII p that do not involve m or n can be obtained from the 
interesting property that log l[ A I[ p is a convex function of 1/p for p > 1 (see Fig. 1), 
which is a consequence of the Riesz-Thorin theorem [14, pp. 214, 219], [10]. The 
convexity implies that i f f (~)  = II A tt 1/,, then for 0 < ~,/3 < 1, 

l o g f ( 0 ~ + ( 1 - 0 ) f l ) < 0 1 o g f ( a ) + ( 1 - 0 ) l o g f ( f l ) ,  0 < 0 <  1. 

Writing Pl = 1/~ and P2 = 1/ f l ,  this inequality can be expressed as 

(1.10) [I a lip ~ I1A 11~, II A II ~ o ,  

1 = < p l , p 2  = < o9, 

Two interesting special cases are 

PiP2 
P = (1 -- O)pl + Op2' 

0 ~ 0 ~ I .  

(1.11) 11 h I[ p ~ II a I1 i/p [I a I1 ~- l / p  

which is proved directly in [21, p. 29] and [30, pp. 25-26],  and 

(1.12) I la l lp<i la l [~/p-II IAII~ -z/p, l < p < 2 .  

Note that a special case of (1.11) is the well-known inequality 11A II 2 < x/11 A 111 II a II oo. 
Finally, two further results that are familiar for p = 1, 2, oo are 

1 1 
(1.13) IlhTIIp = Ilallq, - + - = 1 ,  

P q 

(see, for example, [20, p. 309]) and 

tL[ 0 
A T 0 p - -  m a x ( i l A  Ile, IIA tla) �9 

The bounds (1.8) and (1.9) imply that given the ability to compute [I A I11, II A II 2 and 
IIA[Io~ we can estimate IIAIIp correct to within a factor n 1/4. These a priori 
estimates are at their best when p is close to 1, 2 or oo, but  in general they will not 
provide even one correct  significant digit. The bound in (1. t0) can be much smaller 
than the other upper bounds given above, but how tight it is depends on how 
nearly log l[ A II p is linear in p. To  obtain better estimates numerical methods are 
needed. 
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It is clear from the definition that computing II A 11 p is a nonlinear optimization 
problem over R~. The objective function is non-convex, so there will usually be 
local maxima having function values less than the global maximum II A II p. We do 
not know of any numerical method that can guarantee to compute the global 
maximum at reasonable cost. We present here three methods that estimate I[ A tl p in 
O(mn) flops and which often return an estimate that is exact or has several correct 
significant digits. (A flop is any floating point operation 1-12].) Thus these methods 
are in the same spirit as matrix condition number estimators. 

The three methods are described in Sects. 2-4. The first method is a generaliz- 
ation of the well-known power method. The second method uses condition number 
estimation ideas and is not iterative. The third method iteratively computes 
a sequence of weighted 2-norms. Numerical experiments with the methods are 
presented in Sect. 5. In particular, we test a hybrid method that uses the method of 
Sect. 3 to provide a starting vector for the p-norm power method; this hybrid 
method is the one we recommend in Sect. 6. 

It is worth noting a connection with the total approximation problem 1-26, 33]. 
This problem can be transformed to the problem 

min imize  II By II �9 subject to II v II ~ : 1, 

where B is m x n. If B is square and nonsingular, ct and fl represent a p-norm, and 
A = B-1 ,  then the minimum is 1/11 A II p. Numerical methods for the total approx- 
imation problem 1-26, 27] can therefore be used to compute II A I[ p when A is square 
and nonsingular. However, numerical methods are only available for certain p, and 
the special-purpose methods described here are more efficient. 

2 The power method 

First, we consider an iterative "power method" for computing II A ][ p. It reduces to 
the usual power method applied to ATA when p = 2. We use the notation dualp(x) 
to denote any vector y of unit q-norm such that equality holds in the Hrlder  
inequality (1.1). Throughout,  q is defined by p-1  + q-1 = 1. 

Algorithm PM. Given A ~ IR" • n and Xo e IR n this algorithm computes ~ and x such 
that ~; < I lal lp a n d  Ilaxl[p = ~llxllp. 

Xo = xo/llxo lip 
repeat 

y = A x  
z = A ~ dualp(y) 
if Ilzllq < z rx  

= I[yllp 
quit 

end 
x = dualq(z) 

end 

Algorithm PM requires about  4rmn flops if there are r iterations for convergence. 
The convergence test can be written in several different ways, as we explain below; 
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the form chosen here is the one used in [13, 16, 17]. The power method was first 
derived and analysed by Boyd [3], and it was later investigated by Tao [29]. Tao 
applies the method to an arbitrary mixed subordinate norm 

IIAxll~ 
(2.1) II a II~.p = m a x  - - ,  

x , o  Itxlla 

while Boyd takes the a and fl-norms to be p-norms (possibly different). Algorithm 
PM can be converted to estimate II A I1,, a by making straightforward modifications 
to the norm-dependent  terms. 

There are several ways to derive Algorithm PM. Perhaps the most natural way 
is to examine the optimality conditions for 

F ( x ) -  Ilaxllp 
Ilxllp 

First, we note that the subdifferential (that is, the set of subgradients) of an 
arbitrary vector norm I1" II is given by [6, p. 379] 

c~llxll = {2 : ' tTx  = IIxlI, 112110 < 1}.  

I f x  4 :0  then 2Xx = Ilxll :*" 114110 > 1, from (1.2), and so i f x  ~: 0 

c911xll = {2: 2Tx = Iix11,11411o = 1} 

- = { dual (x) } 

It can also be shown that if A has full rank, 

I laxl l  = {A T d u a l ( Z x ) } .  

We assume now that A has full rank, 1 < p < oo and x 4: 0. Then it is easy to see 
that there is a unique vector dualp(x), so d It x II ~ has just one element, that is, II x II p is 
differentiable. Hence we have 

A + dualp(Ax) II a x  II ~ dualp(x) 
(2.2) V F ( x )  - 

IIx11~ Iixll 2 

The first order Kuhn-Tucker  condition for a local maximum of F is therefore 

II A x  IIp dualp(x) . 
A T dualp(Ax) = Ilxll~ 

Since dualq(dualp(x)) = x~ Iix lip if p ~: 1, oo, this equation can be written as 

(2.3) 
2 

x - ,!x!~, dualq(AT dualp(Ax)). 
II A x  lip 

The power method is simply functional iteration applied to this transformed set of 
Kuhn-Tucker  equations (the scale factor IIxl12/tlaxllp is irrelevant since 
F(oex) = F(x) ) .  A different derivation can be given for the 1 and oo-norms, which 
are not  everywhere differentiable: the subgradient inequality [6, p. 364] is used to 
try to maximize the convex function II A x  II p over the convex set {x: II x II p ~ 1 }. For  



544 N.J. Higham 

all 1 < p < ~ the power method has the desirable property of generating an 
increasing sequence of norm approximations. 

Lemma 2.1. In  Algor i thm P M ,  the vectors  f r o m  the kth i teration sat is fy  
(i) zkTx k = II yklLp, and 

(ii) II yk II p < II z k II ~ -<_ II yk + 1 II. < II A II 9. 
The f i r s t  inequali ty  in (ii) is strict  i f  convergence is not obtained on the k th  iteration. 

P r o o f  zkTx k ----- dualp( yk) r A x k = dualp( yk ) r y k = II yk ll , .  Then II Yk l[ , : zk Txk ~ 
II zk II ~ [I xk  [Ip = I[ Zk [I ~ = zkTxk  + X = dUalp(yk)TAxk + 1 ~ ]l dual,(yk)[ I q [I a x k  + x [] p= 

I1 yk+X lip----< II A I[ p. For the last part, note that in view of (i) the convergence test 
"llzkllq --<_ zkTx k'' can  be wr i t t en  as "llzkllq < Ilykll. '' [ ]  

It is clear from Lemma 2.1 that the convergence test "l[ z 11 q < z x x" in Algorithm 
PM is equivalent to "l lz l l~---zTx '', and since Ilxll. = 1 this is equivalent to 
x = dualq(z). Thus, although the convergence test compares two scalars, it is 
actually testing for equality in (2.3). 

The convergence properties of Algorithm PM are as follows. First, in view of 
Lemma 2.1, the scalars Vk = ][ Ykllp form an increasing and convergent sequence. 
This does not necessarily imply that Algorithm PM converges, since the algorithm 
tests for convergence of the x k, and these vectors could fail to converge. However, 
a subsequence of the x k must converge to a limit, ~ say. Boyd [3] shows that if ff is 
a strong local maximum of F with no zero components, then x k ~ ~ linearly. 

If Algorithm PM converges it converges to a stationary point of F ( x )  when 
1 < p < oo. Thus, instead of the desired global maximum II B II p, we may obtain 
only a local maximum or even a saddle point. When p = 1 or ~ ,  if the algorithm 
converges to a point at which F is not differentiable, that point need not even be 
a stationary point. On the other hand, for p = 1 or ~ Algorithm PM terminates in 
at most n + 1 iterations (assuming that when dual,  or dual s is not unique an 
extreme point of the unit ball is taken), since the algorithm moves between the 
vertices ei of the unit ball in the 1-norm, increasing F on each stage (x = + el for 
p = 1, and dualp(y)= +el for p = or). An example where n iterations are required 
for p = 1 is given in [17]. In fact, a more general result holds [2]. If the power 
method is applied to the norm (2.1) and one of the ~ and/3 norms is polyhedral (that 
is, its unit ball has a finite number of extreme points), then the iteration converges 
in a finite number of steps. Moreover, under a reasonable assumption, this number 
of steps can be bounded in terms of the number of extreme points of the unit balls 
in the s-norm and the dual of the fl-norm. See [2] for a detailed analysis of the 
power method applied to (2.1) where ~t or fl is polyhedral. 

Other pleasing properties of Algorithm PM are as follows. 
(1) If A = x y  T (rank 1), the algorithm converges on the second step with 

= 11 A II p = Ilx lip II y 114, whatever x0. 
(2) Boyd [3] shows that if A has nonnegative elements, A T A  is irreducible, 

1 < p < ~ ,  and Xo has positive elements, then the x k converge and Yk ~ }l A lip. 
In the case p = 1, Algorithm PM is a 1-norm estimation algorithm devised by 

Hager [13] (independently of [3] and [29]) and subsequently analysed and modi- 
fied by the present author [16, 17]. The algorithm given in [16] is the basis of all 
condition number estimation in LAPACK [1]. Algorithm PM has two remarkable 
properties when p = 1: it almost always converges within four iterations (when 
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Xo = (1, 1 . . . . .  1) T, say) and it frequently yields bl A I[1 exactly. This rapid, finite 
terminat ion is also obtained for p = oe, and is related to the fact that  Algori thm 
P M  moves amongst  the finite set of extreme points of the unit ball. The question 
arises of whether Algori thm PM performs better for p =  ov than for p = 1. Our  
numerical  experiments suggest that  the accuracy is similar for the two norms  but 
slightly more  iterations are required on average for p = oe (we have taken into 
account  the fact that  the convergence test in Algorithm PM is sensitive to rounding 
errors for p = oo); a similar observat ion is made in [2]. 

For  other values of p the convergence behaviour is typical of a linearly 
convergent method: exact convergence is not usually obtained in a finite number  of 
steps and arbitrarily many  steps can be required for convergence, as is well-known 
for the 2-norm power method.  We can summarise,  then, with the pleasing state- 
ment  that  the L A P A C K  condition est imator  uses the "best of the p-norm power 
methods".  

In view of the potentially slow convergence, it is desirable to supplement  the 
convergence test of Algori thm PM with a test for convergence of the norm 
estimates ~k = II yk IIr We use the convergence test 

(2.4) i f (  [Izlfq<z'rx~ < t o l )  and k >  1,  

where tol is a tolerance. We force at least two iterations to be taken (k > 1) since 
this was found to be desirable when p = 1 [16]. 

Another  impor tant  practical consideration is the choice of starting vector. In 
the absence of particular knowledge of A or p, Xo = (1, 1 . . . . .  1) r is a natural  
choice. In the next two sections we derive two new algori thms for estimating 
IIAllp. These can be regarded as ways to generate a good starting vector for 
Algori thm PM. 

3 A one step estimator 

Our  second method for estimating II A II p is not iterative. It  chooses the components  
of x in the order x l ,  x2 . . . . .  xn in an a t tempt  to maximize II a x  II p/II x II p. Suppose 
x~ . . . . .  Xk-1 satisfying ] f x ( l : k - 1 ) f l p = l  have been determined and let 
Tk-a = I la ( : ,  l : k  - 1)x(1 :k - 1) lit  We now try to choose xk, and at the same 
time revise x ( l : k  - 1), to give the next partial product  a larger norm. Defining 

we set 

where 

g(2,/~) = 2A(: ,  l : k -  1 ) x ( l : k -  1) + / ~ A ( : , k )  

xk = # * ,  x ( l : k -  1 ) * - 2 * x ( l : k -  I ) ,  

f } g ( 2 * , ~ * ) = m a x  g(2 ,#) :  = 1  . 

Then IIx(l:k)llp = 1 and 

7k = IIA(:, l : k )x( l  :k) lip > 7k-1 �9 

This method  for choosing x is similar to the look-behind/ look-ahead method  of 
[5, 31] for estimating [I T - 1 II 2 or II T I[ 2, where T is a t r iangular  matrix. However ,  
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that algorithm chooses the right-hand side d to make II x II 2 large (for II T-ill 2) or 
small (for IITII2), where Tx = d, and it relies on the triangularity of T. Our 
algorithm can be summarised as follows. 

Algorithm OSE. Given A e ~" this algorithm computes ? and x such that 
y < Ilall .  and I l ax l lp  = ~ l l x l i r  

y = 0  
f o r k =  l : n  

if k =  1 
2" = 0, #* = 1 

else 

[2* 1 [ 2 1  subjectto [ ~ 1  p = l .  Find # ,  that maximizes [yA( : ,k ) ]  /~ p 

end 
x ( l : k -  1)=  2 * x ( l : k -  1) 
x ( k )  = 1~* 
y = 2*y + x(k)A(: ,k )  

end 
= Hyllp 

Algorithm OSE requires a means for computing the maximizing vector in the 
p-norm of an rex2 matrix W =  [yA(: ,k)] .  When p = 2  this vector can be 
obtained from the singular value decomposition (SVD), which can be computed 
explicitly in O(m) flops (see the code SIGMAN of [31-1). Since we can compute the 
gradient of F(x)  = 11Wxl l / l l x l lp  using (2.2), one possibility for 1 < p < ~ is to 
maximize f using an optimization method, such as a quasi-Newton method or the 
conjugate gradient method. Indeed, we could estimate It A II p directly in this way. 
However, our experience with optimization techniques is that while they work well 
for p e (1.1, 11) (say), they exhibit slow convergence when p is outside this range, 
because of the loss of smoothness of F as p approaches 1 or ~ (cf. the comments in 
[22] concerning the lp solution of an overdetermined linear system). We desire 
a method that works well for all values of p. A simple sampling procedure has 
been found to be suitable. We approximate the maximizing vector for 
F (x) = II Wx II p/If x II p by the vector of the form [cos (0), sin (0)] T that maximizes 
F(x) over the equally spaced sample points 

in 
Oi =-- ,  i = 0 : r .  

r 

To include the vectors x = [1, 0], [1, 1]/x/~, [ -  1, 1]/x/~ and [0, 1] we take 
r = 4k; this guarantees that our discrete approximation attains the value II W II, 
when p = 1 or oo. The computational cost of Algorithm OSE with this approxi- 
mate inner maximization is about 4rmn flops. 

It is easy to see that Algorithm OSE produces an exact estimate for all p when 
A is diagonal (assuming that r = 2k > 2 if sampling is used). Moreover, for any 
A the estimate ? satisfies 

tl h II 
(3.1) I I A II p --> ~ -> m a x  II a ( : ,  j )  II p > 

-- j = / , i i -  l/p ' 

where the last inequality is (1.4). 
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Note  that if we minimize instead of maximize in Algorithm OSE we obtain an 
estimate of m inx .o  I l h x l l . / l l x l l p ,  and hence of IIA-1 II. when A is square. If the 
estimates obtained via minimizing were good we would have a remarkably useful 
condition estimation technique. Unfortunately, numerical tests reveal these esti- 
mates to be poor, so we do not pursue this idea. 

4 lteratively re-weighted 2-norms 

The third method we consider is motivated by the observation that a p-norm is 
related to a weighted 2-norm: 

Ilxll = Ix, l"= Iw, x,I 
i = I  i = 1  

w l  = I x l [ t 2 1 1 1 x i l  . 

Hence we can write 

F ( x )  - Il hx l lP  - Ilm, Ax l l~  _ NDI A D 2 ~  Yll 2 = G ( y )  

Itxllg IIO2xl[ 2 I/YN 2 ' 

where D1 and D 2 a r e  diagonal matrices and y = D2x. The idea is to find the vector 
y* that maximizes G (y), then transform to an estimate of maxx F (x) via x = D21 y. 
This x determines new weights that define D1 and D2, and the process repeats 
iteratively. 

Algorithm IRW. Given A e ]R "• Xo e IR n and a convergence tolerance tol, this 
algorithm computes  ~ and x such that ? < 11A 11. and II A x II. = 7 II x It.. 

~0 = I laxo II./l/xo II. 
f o r k =  1,2 . . . .  

D1 = d i a g ( I A x l )  ("- 2)/2 
D2 = diag(t x l) {"- 2)/2 

I IDxAD21vN2 
Compute  v such that 

Ilvllz 
X = D 2 1 V  

rk = I lax l lp / l l x l l .  
if ]~'k -- 7k- l i /Tk  < tol, ~' = 7k, quit, end 

end 

: I ID,AD2*II2  �9 

The inner 2-norm computa t ion  can be done via the power method (Algorithm 
PM); the power method requires O(mn)  flops and need not be iterated to high 
accuracy until convergence is approached. For  the iteration to be defined it is 
necessary that x has no zero components,  and that A x  has no zero components  if 
p < 2; in practice, zero elements can be perturbed to a tolerance times the oo-norm 
of the vector (the tolerance is the unit roundoff  in our  experiments). 

Algorithm I R W  is in the same spirit as iteratively re-weighted least squares 
methods. By analogy with the convergence theory for these methods [4, 25, 
Sect. 5.4] we expect, at best, linear convergence to a local maximum of F ( x ) .  
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5 Numerical experiments 

In this section we investigate the performance of the three p -norm estimators.  Our  
chief concern is the quality of the estimate 7, as measured by the underest imation 
r a t i o / ~ - - ? / [ I  A lip < 1. Unlike in condit ion estimation, where an estimate of the 
correct order  of magni tude is usually acceptable, we ask for correct digits in our  
estimate of 11A IIp. (Recall that  a priori estimates correct to within a factor depend- 
ing only on n are available from (1.4), (1.5), (1.8), (1.9), (1.11) and (1.12).) Thus an 
estimate with # > 0.95 is desired. 

The tests we report  are organised as follows. We choose a matrix A and 
estimate [tA llp for the 21 equally spaced values p = 1, 1.05, 1.10 . . . . .  2 (we can 
restrict to the interval [1, 2] in view of the duality result (1.13)). The exact value of 
1[ A l[ p is computed  directly for p = 1, 2, and for 1 < p < 2 it is approximated  by 
running Algori thm P M  with x0 equal to the maximizing vector  for the previous 
value o fp  (and with tol in (2.4) equal to the unit roundoff) ;  with these good starting 
vectors we expect convergence to [] A lip. For  added safety we also estimate I[ A T [Iq 
using Algori thm P M  with Xo = (1, 1 . . . . .  1) 7 (where p -  1 + q -  1 = 1) and use this 
value if it exceeds the previous l[ A lip approx imat ion  (it did in only one case in the 
tests reported here). For  each value of p we estimate ]PAlJp by the following 
algorithms. 

(1) Algor i thm P M  with Xo = (1, 1 . . . . .  1) 7, and with the convergence test (2.4) 
with tol = 10 -4 .  

(2) Algori thm OSE. The inner maximizat ion  is done using sampling with r = 8 
if p 4 :2  and via the SVD if p = 2. 

(3) Algori thm I R W  with tol = 10 -4.  Because the algori thm does not always 
converge we impose a limit of 50 iterations and take as the final estimate the largest 
estimate generated over all the iterations. 

(4) Algor i thm Pnorm: this is a hybrid algori thm that uses the approximate  
maximizing vector  from Algori thm OSE as the starting vector for Algori thm PM; 
the details are otherwise as in (1) and (2). 

We have run many  examples, three of which we report  here. For  each es t imator  
we give the min imum,  m a x i m u m  and average of both  the underest imat ion ratio 
and the number  of i terations for convergence. Fo r  Algori thm I R W  if the m a x i m u m  
number  of i terations is 50 the number  of occurrences is indicated in parentheses. 
All the tests were performed in M A T L A B  [24], which has unit roundoff  
u ~ 1.1 x 10 -16. Plots of IlA{lp for 1 < p < 2 are given for the three matrices in 
Fig. 1. The fourth plot  in Fig. 1 is based on the data from the first three plots and 
shows 1/p versus logl] A lip; this displays clearly the fact that  logl} A lip is a convex 
function of 1/p. 

The first matr ix  is a 12 x 12 H a d a m a r d  matr ix  H12. / - /E IR "• is a H a d a m a r d  
matr ix  if Ihijl -- 1 and H H  x = n l .  The following l emma evaluates IIHI]~. 

L e m m a  5.1. l f H ~  "• is a H a d a m a r d  m a t r i x  then IlHllp = max(n l/p, n 1-1/p). 

Proof H T is also a H a d a m a r d  matrix,  so by the duality result (1.13) it suffices to 
show that  11H lip = n lip for 1 ~ p < 2. Since [hij[ =- 1, (1.4) gives IIH lip > n x/p. Since 
[IH[I1 = n and [IHll2 = n 1/2, (1.12) gives I lHl[p< n l/p, and so IlHllp = n 1/~ for 
1 < p < 2, as required [] 
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Table 1. Hadamard(12) 

Underestimation ratio Iterations 

min max ave min max ave 

Alg. PM 0.1056 1.000 0.5190 2 2 2 
Alg. OSE t.000 1.000 1.000 - -  - -  - -  
A]g. IRW 0,4638 1,000 0.7919 1 50 (6) 23.286 
Alg, Pnorm 1.000 1.000 1,000 2 2 2 

Table 2. chebspec(8) 

Underestimation ratio Iterations 

min max ave rain max ave 

Alg. PM 0.9597 1.000 0.996l 2 21 11,10 
Alg. OSE 0.9431 1,000 0.9805 - -  - -  - -  
Alg. IRW 0.9340 1.000 0.9838 2 50 (5) 18.810 
Alg. Pnorm 0.9972 0.9996 1.000 2 31 ]2.33 

The results in Table  1 show that  Algor i thm P M  and Algor i thm I R W  return 
many  unacceptab ly  poor  est imates for H12, a l though convergence is quick for 
Algor i thm PM.  The est imates from Algor i thms OSE and P n o r m  are exact, as (3.1) 
shows they must  be. 

The second matr ix  is an 8 x 8 ni lpotent  Chebyshev spectral  differentiat ion 
matr ix  (chebspec(8) from [19"1); the results are in Table 2. The number  of i tera t ions  
required by Algor i thm P M  is relatively large. This mat r ix  produces  some relatively 
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Table 3. rand(25) 

Underestimation ratio Iterations 

min max ave min max ave 

Alg. PM 0.7293 1.000 0.9328 2 28 14.81 
Alg. OSE 0.8525 1.000 0.9508 - -  - -  - -  
Alg. IRW 0.6310 1.000 0.8969 2 50 (11) 31.19 
Alg. Pnorm 0.9999 1.000 1.000 2 16 7.23~ 

poor  estimates from Algorithm OSE, but even the worst estimate provides a 
correct digit. 

The third example, reported in Table 3, is a 25 x 25 random matrix with 
elements from the normal (13, 1) distribution. For this matrix all three of the basic 
algorithms produce some poor estimates, but Algorithm Pnorm yields excellent 
accuracy. 

We repeated the same examples with tol = u. For the Hadamard  matrix only 
the estimates from Algorithm IRW were improved. In the second example all but 
one of the estimates from Algorithm PM and Algorithm Pnorm became exact. In 
the third example the estimates from Algorithm PM were mostly unchanged, but 
those from Algorithm Pnorm all became exact. Many more iterations can be 
required by the algorithms for tol = u (the largest for Algorithm Pnorm was 274 
iterations in the second example). 

We make several more observations based on our experience with the methods. 
(1) In Algorithm PM the relative change (yk -- ~k- 1 )/~k in the estimate yk tends 

to decrease monotonically with k, although occasionally there are slight increases 
for a few iterations. The convergence test (2.4) is therefore a reliable way of 
terminating the iteration. 

(2) In Algorithm IRW the estimates Ilk often increase monotonically. However, 
they can also vary erratically, showing no sign of convergence. Algorithm IRW is 
clearly not competitive with Algorithm OSE in accuracy or cost. 

(3) The estimates produced by Algorithm Pnorm are excellent. In almost all 
cases we have tried with tol = 10 -4 they have at least two correct significant digits, 
increasing to full accuracy if the tolerance is the unit roundoff. One way to 
investigate worst-case behaviour of a condition estimator or norm estimator is to 
apply direct search minimization, with the elements of the matrix A as the 
variables. It is shown in [18] that this approach readily reveals poor estimates for 
the L I N P A C K  estimator and the estimator of [161. We have used the direct search 
routines from [18] with Algorithms OSE and Pnorm, with r = 8, m = n < 4, and 
tol = 10 -4. For  Algorithm OSE the worst underestimation ratio we have produ- 
ced is #rain = 0.7456 (p = 1.9), and for Algorithm Pnorm /train = 0.8017 (p = 1.5). 
Interestingly, increasing r or decreasing tol has little effect on the quality of the 
estimates in these two examples found by direct search (note from (3.1) that for 
n = 4 and p < 2, # > 4-1/2 = 0.5.) Concerning computational cost it is interesting 
to note from Table 2 that Algorithm Pnorm can require more iterations than 
Algorithm PM; it can also produce smaller estimates than Algorithm PM, but in 
our experience this happens only when both estimates are very accurate. 

(4) The quality of the estimate from Algorithm OSE often improves when the 
number of samples r is increased, particularly when p is close to 2. However, 
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increasing r usually cannot make an inexact estimate exact. The value r = 8 seems 
entirely adequate for use in Algorithm Pnorm. 

6 Conclusions 

The p-norm of an m x n matrix can be reliably estimated in O(mn) operations using 
Algorithm Pnorm, which uses Algorithm OSE to generate a good starting vector 
for the power method (Algorithm PM). The algorithm is guaranteed to produce 
II A II,, exactly when A is diagonal or rank 1, or when A has nonnegative elements 
and ATA is irreducible (Algorithm OSE itself is not always exact in latter case, or 
when A has rank 1). The estimate is always within a factor n 1 - 1/p of II A[I r (see (3.1)). 
The cost and accuracy of Algorithm Pnorm depend on the convergence tolerance 
tol in (2.4). If tol = 10 -4, as in our experiments, then correct significant digits are 
almost always obtained and the operation count can be estimated very roughly as 
70mn flops (the number of iterations in Algorithm PM varies greatly with the 
matrix A). Greater accuracy can be obtained by taking a smaller tolerance in 
Algorithm PM. 

A less expensive estimate can be obtained from Algorithm OSE alone, but this 
estimate is more likely not to have any correct significant digits. In the case of the 
2-norm Algorithm OSE is particularly efficient because each inner maximization 
can be done exactly in O(m) flops via the SVD. Algorithm OSE then resembles the 
I[ T[[2 estimator of [5] for triangular matrices T, but it has the advantages of 
working with an arbitrary rectangular matrix instead of a square triangular matrix 
and in practice it gives sharper estimates than the estimator of [5]. (Note, however, 
that the method of [5] also yields very good estimates for the more elusive quantity 
II T-  1 II 2, given only T.) 

In summary, we recommend Algorithm Pnorm for estimating [[A[lp. A 
MATLAB M-file pnorm.m implementing the algorithm is listed in the Appendix. It 
has the same functionality as MATLAB's built-in function norm but it works for 
any 1 < p < oe for both matrices and vectors. 

Appendix: Listings of MATLAB routines 

These routines are available by anonymous FTP from the machine at Internet 
address 130.88.16.10, in directory pub/higham. 

PNORM.M 

function 
% PNORM 
% 
% 
% 
% 
% 
% 

[est, x, k] = pnorm(A, p, tol, noprint) 
lEST, x, k] = PNORM(A, p, TOL) estimates the p-norm of a 
matrix A, using the p-norm power method with a specially chosen 
starting vector. 
TOL is a relative convergence tolerance (default IE-4). 
Returned are the norm estimate EST, the corresponding 
approximate maximizing vector x, and the number of power method 
iterations k. 



552 N.J. Higham 

% 
% 

% 
% 
% 

% 

% 
% 
% 
% 

A nonzero fifth argument  suppresses output  to the screen. 
If A is a vector, this routine simply returns N O R M ( A ,  p). 

Note:  The estimate is exact for p = 1, but is not  always exact for 
p = 2 or p = inf. Code could be added to treat p = 2 and p = inf 
separately. 

Calls DUAL,  and SEQA from [19,]. 

Reference 
N.J. Higham, Estimating the matrix p-norm,  Numerical  Analysis;  
Report  No. 202, University of Manchester, October  1991; 
to appear  in Numer.  Math. 

[m, n]  = size(A); 
If  min(m, n) = = 1, est = norm(A,  p); return, end 

if nargin < 4, noprint  = 0; end 
if nargin < 3, tol = le-4; end 

% Stage I. Use Algorithm OSE to get starting vector x for power method. 
% Form y = B * x, at each stage choosing x(k) = c and scaling previous 
% x(k + l : n )  by s, where norm ( [ c s ] , p )  = 1. 

sm = 9; % Number  of samples. 
y = zeros (m, 1); x = zeros (n, 1); 

for k = l : n  

if k =  =1  
c =  1 ; s = 0 ;  

else 
W = [A(:,  k) y ] ;  
if p = = 2 % Special case. Solve exactly for 2-norm. 

[U,  S, V]  = svd(W); 
% For  Matlab 4.0 replace the previous line by the next one 
% so that  this routine works for sparse input A. 
% [U,  S, V]  = svd (full (W)); 
c = V(1, 1); s = V(2, 1); 

else 

end 
end 

fopt = 0; 
for th = seqa(0, pi, sm) 

cl  = cos(th); sl  = sin(th); 
n rm = norm ( [c l  s l ] ,  p); 
c l  = c l /nrm;  sl = s l /nrm; 
f = n o r m ( W .  [c l  s l ] ' ,  p); 
if f > fopt 

fopt = f; 
c = c l ;  s = sl;  

end 
end 

% [c l  s l ]  has unit p-norm. 
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x(k) = c; 
y = x ( k ) ,  A(: ,k) + s , y ;  
i f k > l , x ( l : k -  1 ) = s , x ( l : k - 1 ) ; e n d  

end 

est = norm(y,  p); 
if ~ noprint, fprintf( 'Alg OSE: % 9.4e\n', est), end 

% Stage IL Apply Algorithm PM (the power method). 

q = dual(p); 
k = l ;  

while 1 

y = A , x ;  
est_old = est; 
est = norm(y,  p); 

z = A' , dua l (y ,  p); 

if ~ noprint 
fprintf( '%2.0 f: norm(y)  = %9.4e, norm(z)  = % 9 . 4 e ' , . . .  

k, norm(y,  p), norm(z, q)) 
fprintf( '  rel_incr(est) = %9.4e\n ' ,  (est-est_old)/est) 

end 

if (norm(z, q)(=z'*x[ abs(est-est_old)/est(=tol)  & k > 1 
return 

end 

x = dual(z, q); 
k = k + l ;  

end 

D U A L . M  

function 
% D U A L  
% 
% 
% 
% 

y = dual(x, p) 
Y = DUAL(X,  p) is a vector of unit q-norm that is dual to X with 
respect to the p-norm, that is, no rm(Y,q)  = 1 and there is 
equality in the Holder inequality: X ' . Y  = norm(X, p) norm(Y,  q). 
Special case: DUAL(X) ,  where X > = 1 is a scalar, returns Y such 

that 1/X + 1/Y = 1. 

if max(size(x))= = 1 & nargin = = 1 
p = x ;  

end 

% The following test avoids a 'division by zero message' when p = 1. 
if p =  = 1 

q = inf; 
else 

q = 1/(1 - l /p);  
end 
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if max( s i ze (x ) )=  = 1 & nargin  = = 1 
y = q; 
re turn  

end 

if norm(x ,  i n f ) =  = 0 ,  y = x; return,  end 

if p =  = 1  

y = s i g n ( x ) + ( x = = 0 ) ;  % y ( i ) =  + 1 or  - l ( i f x ( i )  real). 

elseif p = = inf 

[xmax,  k ]  = max(abs(x) ) ;  
f = f ind (abs (x )=  = x m a x ) ;  k = f(1); 
y = zeros(x);  
y (k)  = s ign(x(k)) ;  % y  is a mul t ip le  of  unit  vector  e_k.  

else % 1 < p < inf. Dua l  is unique in this case. 
x = x /norm(x ,  inf); % This scaling helps to avo id  under/over-f low.  
y = abs(x). ^(p - 1) . .  (sign(x) + ( x =  =0) ) ;  
y = y / n o r m ( y ,  q); % Normal ize  to unit  q-norm.  

end 

Acknowledgements. I thank Des Higham for suggesting improvements to the manuscript. 
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