
Numer. Math. 62, 539-555 (1992)
hlumeri etm
Malhemalik
�9 Springer-Verlag 1992

Estimating the matrix p-norm

Nicholas J. Higham
Nuffield Science Research Fellow, Department of Mathematics, University of Manchester,
Manchester, M13 9PL, UK

Received November 22, 1991

Summary. The H61der p-norm of an m • n matrix has no explicit representation
unless p = 1, 2 or ~ . It is shown here that the p-norm can be estimated reliably in
O(mn) operations. A generalization of the power method is used, with a starting
vector determined by a technique with a condition est imation flavour. The algo-
r i thm nearly always computes a p-norm estimate correct to the specified accuracy,
and the estimate is always within a factor n ~ - l/p of t[A lit As a by-product , a new
way is obtained to estimate the 2-norm of a rectangular matrix; this method is more
general and produces better estimates in practice than a similar technique of Cline,
Conn and Van Loan.

Mathematical Subject Classification (1991) : 65F35

1 Introduction

Four matrix norms are commonly used in scientific computing: the 1, 2 and
oo-norms and the Frobenius norm. The first three are particular cases of the
H61der p-norm

Ilhl[p = max I[axllp, A~]Rm•
x*o Ilxllp

where p > 1 and Ilxllp = (~7=1 IxilP) I/p. For p = 1, ov the norm is given explicitly
in terms of the elements of A by

I[a[l| = max ~]aij[, I[hllx = I[ATII|
l ~ i ~ m j = l

and the 2-norm has the characterisation [I A II 2 = p(ATA) ~/2, where p denotes the
spectral radius. N o such formulas for II A II p are known for other values of p, and
how best to estimate or compute [I A [[p is an open question that we address in this
work.

The problem of comput ing II A lip is of interest for several reasons. First, it has
connections with matr ix condition number est imation [15]. As a by-product of this

540 N.J. Higham

work we obtain a new way to estimate 1[A I12 as well as further insight into the
condition number estimator used in LAPACK. Second, p-norms are well-studied
in approximation theory and various algorithms have been developed for approx-
imation in the p-norm [7, 22, 23, 32]. The ability to compute the p-norm of a matrix
may be useful in this context; for example, one may wish to compute the relative
residual [I b - A x lip~(I[A 1[p I[x I1 p) for an approximate Ip solution to an overdeter-
mined system. Further motivation for this work is that we have occasionally found
it inconvenient that MATLAB's built-in function norm [24] is unable to compute
II A[I p if p :~ 1, 2, or oo, although it will compute I1 x IIp for all p __> 1. Using the
algorithms developed here we have written a MATLAB M-file pnorm.m that
overcomes this limitation (see Appendix); this M-file has the desirable property that
it works with a sparse matrix argument in MATLAB 4.0 [9].

We will assume throughout that vectors and matrices are real. All our algo-
rithms are valid for complex matrices if transposes are changed to conjugate
transposes, but the convergence results from [2] and [3] described in Sect. 2 have
been proved only for real A.

Before considering the numerical computation of IIA Itv we summarise some
useful theoretical results about the p-norm. A fundamental inequality for vectors is
the Hrlder inequality

1 1
(1.1) x Ty <=] lxl lpl lyl lq, - + - = 1 .

p q

This is an equality when p ,q > 1 if the vectors (I x ~ f) and (ly , I a) are linearly
dependent and sign(x~yi) is constant for all i; equality is also possible when p = 1
and p = oo, as is easily verified. For a general vector norm II �9 II the dual norm is
defined by

zTx
(1.2) II x IIo -- max - - .

z,O Ilzll

It follows from the Hrlder inequality that the dual of the p-norm is the q-norm,
wherep-1 + q - 1 = 1.

How much two H61der norms of a vector can differ is shown by the attainable
inequalities [8, p. 28], [11, Lemma 1.1]

(')
I _ Z Ilxllp2, p a < p 2 . (1.3) Ilxll~ < [Ixllp, < n ~

Using (1.3), and (1.13) below, one can derive the upper bounds in

(1.4) max II h (:, j)I[~ =< I1 a 11 p _-< n x - x/~ max II A (:, j) II ~,
J J

(1.5) max [IA(i,:)l[p/r <= I[A][p<=ml/Pmax lia(i,:)llp/r
i i

where we have used MATLAB-style indexing notation, as in [12].
Matrix norms can be compared using the following elegant result of Schneider

and Strang [28] (see also [20, p. 303]): if II �9 II~ and [l" IIp denote two vector norms
and the corresponding subordinate matrix norms, then for A ~ Nm•

[IAI[~=(max [[x[l~'~(max []x[[p'~
(1.6) m a x ~ \o ,x~R" I[xll~] , ,o.x~R o ~ ,] "

Estimating the matrix p-norm 541

From (1.3) and (1.6), we have, when m = n,
/ 1 1

II a l ip , ~min(pl,p2) max(pl, P2)) (1.7) max = n
A , 0 t l A IIp~

Note that, unlike for vectors, Pl < P2 does not imply II A I[p~ > [I A IIp~. The result
(1.7) implies, for example, that for all p __> 1

II A ll~ = n ~ _ ~:~
(1.8) n f : i7) < [IAtlp < l tAll l ,

(1.9) HAII2 < [[hllp < n Ix/p-l/2111AII2.
n i l ~ p - i / 2 1 = =

Upper bounds for II AII p that do not involve m or n can be obtained from the
interesting property that log l[A I[p is a convex function of 1/p for p > 1 (see Fig. 1),
which is a consequence of the Riesz-Thorin theorem [14, pp. 214, 219], [10]. The
convexity implies that i f f (~) = II A tt 1/,, then for 0 < ~,/3 < 1,

l o g f (0 ~ + (1 - 0) f l) < 0 1 o g f (a) + (1 - 0) l o g f (f l) , 0 < 0 < 1.

Writing Pl = 1/~ and P2 = 1/ f l , this inequality can be expressed as

(1.10) [I a lip ~ I1A 11~, II A II ~ o ,

1 = < p l , p 2 = < o9,

Two interesting special cases are

PiP2
P = (1 -- O)pl + Op2'

0 ~ 0 ~ I .

(1.11) 11 h I[p ~ II a I1 i/p [I a I1 ~- l / p

which is proved directly in [21, p. 29] and [30, pp. 25-26], and

(1.12) I la l lp<i la l [~/p-II IAII~ -z/p, l < p < 2 .

Note that a special case of (1.11) is the well-known inequality 11A II 2 < x/11 A 111 II a II oo.
Finally, two further results that are familiar for p = 1, 2, oo are

1 1
(1.13) IlhTIIp = Ilallq, - + - = 1 ,

P q

(see, for example, [20, p. 309]) and

tL[0
A T 0 p - - m a x (i l A Ile, IIA tla) �9

The bounds (1.8) and (1.9) imply that given the ability to compute [I A I11, II A II 2 and
IIA[Io~ we can estimate IIAIIp correct to within a factor n 1/4. These a priori
estimates are at their best when p is close to 1, 2 or oo, but in general they will not
provide even one correct significant digit. The bound in (1. t0) can be much smaller
than the other upper bounds given above, but how tight it is depends on how
nearly log l[A II p is linear in p. To obtain better estimates numerical methods are
needed.

542 N.J. Higham

It is clear from the definition that computing II A 11 p is a nonlinear optimization
problem over R~. The objective function is non-convex, so there will usually be
local maxima having function values less than the global maximum II A II p. We do
not know of any numerical method that can guarantee to compute the global
maximum at reasonable cost. We present here three methods that estimate I[A tl p in
O(mn) flops and which often return an estimate that is exact or has several correct
significant digits. (A flop is any floating point operation 1-12].) Thus these methods
are in the same spirit as matrix condition number estimators.

The three methods are described in Sects. 2-4. The first method is a generaliz-
ation of the well-known power method. The second method uses condition number
estimation ideas and is not iterative. The third method iteratively computes
a sequence of weighted 2-norms. Numerical experiments with the methods are
presented in Sect. 5. In particular, we test a hybrid method that uses the method of
Sect. 3 to provide a starting vector for the p-norm power method; this hybrid
method is the one we recommend in Sect. 6.

It is worth noting a connection with the total approximation problem 1-26, 33].
This problem can be transformed to the problem

min imize II By II �9 subject to II v II ~ : 1,

where B is m x n. If B is square and nonsingular, ct and fl represent a p-norm, and
A = B-1 , then the minimum is 1/11 A II p. Numerical methods for the total approx-
imation problem 1-26, 27] can therefore be used to compute II A I[p when A is square
and nonsingular. However, numerical methods are only available for certain p, and
the special-purpose methods described here are more efficient.

2 The power method

First, we consider an iterative "power method" for computing II A][p. It reduces to
the usual power method applied to ATA when p = 2. We use the notation dualp(x)
to denote any vector y of unit q-norm such that equality holds in the Hrlder
inequality (1.1). Throughout, q is defined by p-1 + q-1 = 1.

Algorithm PM. Given A ~ IR" • n and Xo e IR n this algorithm computes ~ and x such
that ~; < I lal lp a n d Ilaxl[p = ~llxllp.

Xo = xo/llxo lip
repeat

y = A x
z = A ~ dualp(y)
if Ilzllq < z rx

= I[yllp
quit

end
x = dualq(z)

end

Algorithm PM requires about 4rmn flops if there are r iterations for convergence.
The convergence test can be written in several different ways, as we explain below;

Estimating the matrix p-norm 543

the form chosen here is the one used in [13, 16, 17]. The power method was first
derived and analysed by Boyd [3], and it was later investigated by Tao [29]. Tao
applies the method to an arbitrary mixed subordinate norm

IIAxll~
(2.1) II a II~.p = m a x - - ,

x , o Itxlla

while Boyd takes the a and fl-norms to be p-norms (possibly different). Algorithm
PM can be converted to estimate II A I1,, a by making straightforward modifications
to the norm-dependent terms.

There are several ways to derive Algorithm PM. Perhaps the most natural way
is to examine the optimality conditions for

F (x) - Ilaxllp
Ilxllp

First, we note that the subdifferential (that is, the set of subgradients) of an
arbitrary vector norm I1" II is given by [6, p. 379]

c~llxll = {2 : ' tTx = IIxlI, 112110 < 1}.

I f x 4 :0 then 2Xx = Ilxll :*" 114110 > 1, from (1.2), and so i f x ~: 0

c911xll = {2: 2Tx = Iix11,11411o = 1}

- = { dual (x) }

It can also be shown that if A has full rank,

I laxl l = {A T d u a l (Z x) } .

We assume now that A has full rank, 1 < p < oo and x 4: 0. Then it is easy to see
that there is a unique vector dualp(x), so d It x II ~ has just one element, that is, II x II p is
differentiable. Hence we have

A + dualp(Ax) II a x II ~ dualp(x)
(2.2) V F (x) -

IIx11~ Iixll 2

The first order Kuhn-Tucker condition for a local maximum of F is therefore

II A x IIp dualp(x) .
A T dualp(Ax) = Ilxll~

Since dualq(dualp(x)) = x~ Iix lip if p ~: 1, oo, this equation can be written as

(2.3)
2

x - ,!x!~, dualq(AT dualp(Ax)).
II A x lip

The power method is simply functional iteration applied to this transformed set of
Kuhn-Tucker equations (the scale factor IIxl12/tlaxllp is irrelevant since
F(oex) = F(x)) . A different derivation can be given for the 1 and oo-norms, which
are not everywhere differentiable: the subgradient inequality [6, p. 364] is used to
try to maximize the convex function II A x II p over the convex set {x: II x II p ~ 1 }. For

544 N.J. Higham

all 1 < p < ~ the power method has the desirable property of generating an
increasing sequence of norm approximations.

Lemma 2.1. In Algor i thm P M , the vectors f r o m the kth i teration sat is fy
(i) zkTx k = II yklLp, and

(ii) II yk II p < II z k II ~ -<_ II yk + 1 II. < II A II 9.
The f i r s t inequali ty in (ii) is strict i f convergence is not obtained on the k th iteration.

P r o o f zkTx k ----- dualp(yk) r A x k = dualp(yk) r y k = II yk ll , . Then II Yk l[, : zk Txk ~
II zk II ~ [I xk [Ip = I[Zk [I ~ = zkTxk + X = dUalp(yk)TAxk + 1 ~]l dual,(yk)[I q [I a x k + x [] p=

I1 yk+X lip----< II A I[p. For the last part, note that in view of (i) the convergence test
"llzkllq --<_ zkTx k'' can be wr i t t en as "llzkllq < Ilykll. '' []

It is clear from Lemma 2.1 that the convergence test "l[z 11 q < z x x" in Algorithm
PM is equivalent to "l lz l l~---zTx '', and since Ilxll. = 1 this is equivalent to
x = dualq(z). Thus, although the convergence test compares two scalars, it is
actually testing for equality in (2.3).

The convergence properties of Algorithm PM are as follows. First, in view of
Lemma 2.1, the scalars Vk =][Ykllp form an increasing and convergent sequence.
This does not necessarily imply that Algorithm PM converges, since the algorithm
tests for convergence of the x k, and these vectors could fail to converge. However,
a subsequence of the x k must converge to a limit, ~ say. Boyd [3] shows that if ff is
a strong local maximum of F with no zero components, then x k ~ ~ linearly.

If Algorithm PM converges it converges to a stationary point of F (x) when
1 < p < oo. Thus, instead of the desired global maximum II B II p, we may obtain
only a local maximum or even a saddle point. When p = 1 or ~ , if the algorithm
converges to a point at which F is not differentiable, that point need not even be
a stationary point. On the other hand, for p = 1 or ~ Algorithm PM terminates in
at most n + 1 iterations (assuming that when dual, or dual s is not unique an
extreme point of the unit ball is taken), since the algorithm moves between the
vertices ei of the unit ball in the 1-norm, increasing F on each stage (x = + el for
p = 1, and dualp(y)= +el for p = or). An example where n iterations are required
for p = 1 is given in [17]. In fact, a more general result holds [2]. If the power
method is applied to the norm (2.1) and one of the ~ and/3 norms is polyhedral (that
is, its unit ball has a finite number of extreme points), then the iteration converges
in a finite number of steps. Moreover, under a reasonable assumption, this number
of steps can be bounded in terms of the number of extreme points of the unit balls
in the s-norm and the dual of the fl-norm. See [2] for a detailed analysis of the
power method applied to (2.1) where ~t or fl is polyhedral.

Other pleasing properties of Algorithm PM are as follows.
(1) If A = x y T (rank 1), the algorithm converges on the second step with

= 11 A II p = Ilx lip II y 114, whatever x0.
(2) Boyd [3] shows that if A has nonnegative elements, A T A is irreducible,

1 < p < ~ , and Xo has positive elements, then the x k converge and Yk ~ }l A lip.
In the case p = 1, Algorithm PM is a 1-norm estimation algorithm devised by

Hager [13] (independently of [3] and [29]) and subsequently analysed and modi-
fied by the present author [16, 17]. The algorithm given in [16] is the basis of all
condition number estimation in LAPACK [1]. Algorithm PM has two remarkable
properties when p = 1: it almost always converges within four iterations (when

Estimating the matrix p-norm 545

Xo = (1, 1 1) T, say) and it frequently yields bl A I[1 exactly. This rapid, finite
terminat ion is also obtained for p = oe, and is related to the fact that Algori thm
P M moves amongst the finite set of extreme points of the unit ball. The question
arises of whether Algori thm PM performs better for p = ov than for p = 1. Our
numerical experiments suggest that the accuracy is similar for the two norms but
slightly more iterations are required on average for p = oe (we have taken into
account the fact that the convergence test in Algorithm PM is sensitive to rounding
errors for p = oo); a similar observat ion is made in [2].

For other values of p the convergence behaviour is typical of a linearly
convergent method: exact convergence is not usually obtained in a finite number of
steps and arbitrarily many steps can be required for convergence, as is well-known
for the 2-norm power method. We can summarise, then, with the pleasing state-
ment that the L A P A C K condition est imator uses the "best of the p-norm power
methods".

In view of the potentially slow convergence, it is desirable to supplement the
convergence test of Algori thm PM with a test for convergence of the norm
estimates ~k = II yk IIr We use the convergence test

(2.4) i f ([Izlfq<z'rx~ < t o l) and k > 1,

where tol is a tolerance. We force at least two iterations to be taken (k > 1) since
this was found to be desirable when p = 1 [16].

Another impor tant practical consideration is the choice of starting vector. In
the absence of particular knowledge of A or p, Xo = (1, 1 1) r is a natural
choice. In the next two sections we derive two new algori thms for estimating
IIAllp. These can be regarded as ways to generate a good starting vector for
Algori thm PM.

3 A one step estimator

Our second method for estimating II A II p is not iterative. It chooses the components
of x in the order x l , x2 xn in an a t tempt to maximize II a x II p/II x II p. Suppose
x~ Xk-1 satisfying] f x (l : k - 1) f l p = l have been determined and let
Tk-a = I la (: , l : k - 1)x(1 :k - 1) lit We now try to choose xk, and at the same
time revise x (l : k - 1), to give the next partial product a larger norm. Defining

we set

where

g(2,/~) = 2A(: , l : k - 1) x (l : k - 1) + / ~ A (: , k)

xk = # * , x (l : k - 1) * - 2 * x (l : k - I) ,

f } g (2 * , ~ *) = m a x g(2 ,#) : = 1 .

Then IIx(l:k)llp = 1 and

7k = IIA(:, l : k)x(l :k) lip > 7k-1 �9

This method for choosing x is similar to the look-behind/ look-ahead method of
[5, 31] for estimating [I T - 1 II 2 or II T I[2, where T is a t r iangular matrix. However ,

546 N.J. Higham

that algorithm chooses the right-hand side d to make II x II 2 large (for II T-ill 2) or
small (for IITII2), where Tx = d, and it relies on the triangularity of T. Our
algorithm can be summarised as follows.

Algorithm OSE. Given A e ~" this algorithm computes ? and x such that
y < Ilall . and I l ax l lp = ~ l l x l i r

y = 0
f o r k = l : n

if k = 1
2" = 0, #* = 1

else

[2* 1 [2 1 subjectto [~ 1 p = l . Find # , that maximizes [yA(: ,k)] /~ p

end
x (l : k - 1)= 2 * x (l : k - 1)
x (k) = 1~*
y = 2*y + x(k)A(: ,k)

end
= Hyllp

Algorithm OSE requires a means for computing the maximizing vector in the
p-norm of an rex2 matrix W = [yA(: ,k)] . When p = 2 this vector can be
obtained from the singular value decomposition (SVD), which can be computed
explicitly in O(m) flops (see the code SIGMAN of [31-1). Since we can compute the
gradient of F(x) = 11Wxl l / l l x l lp using (2.2), one possibility for 1 < p < ~ is to
maximize f using an optimization method, such as a quasi-Newton method or the
conjugate gradient method. Indeed, we could estimate It A II p directly in this way.
However, our experience with optimization techniques is that while they work well
for p e (1.1, 11) (say), they exhibit slow convergence when p is outside this range,
because of the loss of smoothness of F as p approaches 1 or ~ (cf. the comments in
[22] concerning the lp solution of an overdetermined linear system). We desire
a method that works well for all values of p. A simple sampling procedure has
been found to be suitable. We approximate the maximizing vector for
F (x) = II Wx II p/If x II p by the vector of the form [cos (0), sin (0)] T that maximizes
F(x) over the equally spaced sample points

in
Oi =-- , i = 0 : r .

r

To include the vectors x = [1, 0], [1, 1]/x/~, [- 1, 1]/x/~ and [0, 1] we take
r = 4k; this guarantees that our discrete approximation attains the value II W II,
when p = 1 or oo. The computational cost of Algorithm OSE with this approxi-
mate inner maximization is about 4rmn flops.

It is easy to see that Algorithm OSE produces an exact estimate for all p when
A is diagonal (assuming that r = 2k > 2 if sampling is used). Moreover, for any
A the estimate ? satisfies

tl h II
(3.1) I I A II p --> ~ -> m a x II a (: , j) II p >

-- j = / , i i - l/p '

where the last inequality is (1.4).

Estimating the matrix p-norm 547

Note that if we minimize instead of maximize in Algorithm OSE we obtain an
estimate of m inx .o I l h x l l . / l l x l l p , and hence of IIA-1 II. when A is square. If the
estimates obtained via minimizing were good we would have a remarkably useful
condition estimation technique. Unfortunately, numerical tests reveal these esti-
mates to be poor, so we do not pursue this idea.

4 lteratively re-weighted 2-norms

The third method we consider is motivated by the observation that a p-norm is
related to a weighted 2-norm:

Ilxll = Ix, l"= Iw, x,I
i = I i = 1

w l = I x l [t 2 1 1 1 x i l .

Hence we can write

F (x) - Il hx l lP - Ilm, Ax l l~ _ NDI A D 2 ~ Yll 2 = G (y)

Itxllg IIO2xl[2 I/YN 2 '

where D1 and D 2 a r e diagonal matrices and y = D2x. The idea is to find the vector
y* that maximizes G (y), then transform to an estimate of maxx F (x) via x = D21 y.
This x determines new weights that define D1 and D2, and the process repeats
iteratively.

Algorithm IRW. Given A e]R "• Xo e IR n and a convergence tolerance tol, this
algorithm computes ~ and x such that ? < 11A 11. and II A x II. = 7 II x It..

~0 = I laxo II./l/xo II.
f o r k = 1,2

D1 = d i a g (I A x l) ("- 2)/2
D2 = diag(t x l) {"- 2)/2

I IDxAD21vN2
Compute v such that

Ilvllz
X = D 2 1 V

rk = I lax l lp / l l x l l .
if]~'k -- 7k- l i /Tk < tol, ~' = 7k, quit, end

end

: I ID,AD2*II2 �9

The inner 2-norm computa t ion can be done via the power method (Algorithm
PM); the power method requires O(mn) flops and need not be iterated to high
accuracy until convergence is approached. For the iteration to be defined it is
necessary that x has no zero components, and that A x has no zero components if
p < 2; in practice, zero elements can be perturbed to a tolerance times the oo-norm
of the vector (the tolerance is the unit roundoff in our experiments).

Algorithm I R W is in the same spirit as iteratively re-weighted least squares
methods. By analogy with the convergence theory for these methods [4, 25,
Sect. 5.4] we expect, at best, linear convergence to a local maximum of F (x) .

548 N.J. Higham

5 Numerical experiments

In this section we investigate the performance of the three p -norm estimators. Our
chief concern is the quality of the estimate 7, as measured by the underest imation
r a t i o / ~ - - ? / [I A lip < 1. Unlike in condit ion estimation, where an estimate of the
correct order of magni tude is usually acceptable, we ask for correct digits in our
estimate of 11A IIp. (Recall that a priori estimates correct to within a factor depend-
ing only on n are available from (1.4), (1.5), (1.8), (1.9), (1.11) and (1.12).) Thus an
estimate with # > 0.95 is desired.

The tests we report are organised as follows. We choose a matrix A and
estimate [tA llp for the 21 equally spaced values p = 1, 1.05, 1.10 2 (we can
restrict to the interval [1, 2] in view of the duality result (1.13)). The exact value of
1[A l[p is computed directly for p = 1, 2, and for 1 < p < 2 it is approximated by
running Algori thm P M with x0 equal to the maximizing vector for the previous
value o fp (and with tol in (2.4) equal to the unit roundoff) ; with these good starting
vectors we expect convergence to [] A lip. For added safety we also estimate I[A T [Iq
using Algori thm P M with Xo = (1, 1 1) 7 (where p - 1 + q - 1 = 1) and use this
value if it exceeds the previous l[A lip approx imat ion (it did in only one case in the
tests reported here). For each value of p we estimate]PAlJp by the following
algorithms.

(1) Algor i thm P M with Xo = (1, 1 1) 7, and with the convergence test (2.4)
with tol = 10 -4 .

(2) Algori thm OSE. The inner maximizat ion is done using sampling with r = 8
if p 4 :2 and via the SVD if p = 2.

(3) Algori thm I R W with tol = 10 -4. Because the algori thm does not always
converge we impose a limit of 50 iterations and take as the final estimate the largest
estimate generated over all the iterations.

(4) Algor i thm Pnorm: this is a hybrid algori thm that uses the approximate
maximizing vector from Algori thm OSE as the starting vector for Algori thm PM;
the details are otherwise as in (1) and (2).

We have run many examples, three of which we report here. For each es t imator
we give the min imum, m a x i m u m and average of both the underest imat ion ratio
and the number of i terations for convergence. Fo r Algori thm I R W if the m a x i m u m
number of i terations is 50 the number of occurrences is indicated in parentheses.
All the tests were performed in M A T L A B [24], which has unit roundoff
u ~ 1.1 x 10 -16. Plots of IlA{lp for 1 < p < 2 are given for the three matrices in
Fig. 1. The fourth plot in Fig. 1 is based on the data from the first three plots and
shows 1/p versus logl] A lip; this displays clearly the fact that logl} A lip is a convex
function of 1/p.

The first matr ix is a 12 x 12 H a d a m a r d matr ix H12. / - /E IR "• is a H a d a m a r d
matr ix if Ihijl -- 1 and H H x = n l . The following l emma evaluates IIHI]~.

L e m m a 5.1. l f H ~ "• is a H a d a m a r d m a t r i x then IlHllp = max(n l/p, n 1-1/p).

Proof H T is also a H a d a m a r d matrix, so by the duality result (1.13) it suffices to
show that 11H lip = n lip for 1 ~ p < 2. Since [hij[=- 1, (1.4) gives IIH lip > n x/p. Since
[IH[I1 = n and [IHll2 = n 1/2, (1.12) gives I lHl[p< n l/p, and so IlHllp = n 1/~ for
1 < p < 2, as required []

Estimating the matrix p-norm 549

1 2

10

Hadamard(12) '~!I cl~bspec(8)

30

25 ' ,
0 5 10 15

30 rand(25)

2O

15

I0

i

50 5 10 15

1/p versus log(norm(A,p))

o'.5

Fig. 1. Plots of II A II p

Table 1. Hadamard(12)

Underestimation ratio Iterations

min max ave min max ave

Alg. PM 0.1056 1.000 0.5190 2 2 2
Alg. OSE t.000 1.000 1.000 - - - - - -
A]g. IRW 0,4638 1,000 0.7919 1 50 (6) 23.286
Alg, Pnorm 1.000 1.000 1,000 2 2 2

Table 2. chebspec(8)

Underestimation ratio Iterations

min max ave rain max ave

Alg. PM 0.9597 1.000 0.996l 2 21 11,10
Alg. OSE 0.9431 1,000 0.9805 - - - - - -
Alg. IRW 0.9340 1.000 0.9838 2 50 (5) 18.810
Alg. Pnorm 0.9972 0.9996 1.000 2 31]2.33

The results in Table 1 show that Algor i thm P M and Algor i thm I R W return
many unacceptab ly poor est imates for H12, a l though convergence is quick for
Algor i thm PM. The est imates from Algor i thms OSE and P n o r m are exact, as (3.1)
shows they must be.

The second matr ix is an 8 x 8 ni lpotent Chebyshev spectral differentiat ion
matr ix (chebspec(8) from [19"1); the results are in Table 2. The number of i tera t ions
required by Algor i thm P M is relatively large. This mat r ix produces some relatively

550 N.J. Higham

Table 3. rand(25)

Underestimation ratio Iterations

min max ave min max ave

Alg. PM 0.7293 1.000 0.9328 2 28 14.81
Alg. OSE 0.8525 1.000 0.9508 - - - - - -
Alg. IRW 0.6310 1.000 0.8969 2 50 (11) 31.19
Alg. Pnorm 0.9999 1.000 1.000 2 16 7.23~

poor estimates from Algorithm OSE, but even the worst estimate provides a
correct digit.

The third example, reported in Table 3, is a 25 x 25 random matrix with
elements from the normal (13, 1) distribution. For this matrix all three of the basic
algorithms produce some poor estimates, but Algorithm Pnorm yields excellent
accuracy.

We repeated the same examples with tol = u. For the Hadamard matrix only
the estimates from Algorithm IRW were improved. In the second example all but
one of the estimates from Algorithm PM and Algorithm Pnorm became exact. In
the third example the estimates from Algorithm PM were mostly unchanged, but
those from Algorithm Pnorm all became exact. Many more iterations can be
required by the algorithms for tol = u (the largest for Algorithm Pnorm was 274
iterations in the second example).

We make several more observations based on our experience with the methods.
(1) In Algorithm PM the relative change (yk -- ~k- 1)/~k in the estimate yk tends

to decrease monotonically with k, although occasionally there are slight increases
for a few iterations. The convergence test (2.4) is therefore a reliable way of
terminating the iteration.

(2) In Algorithm IRW the estimates Ilk often increase monotonically. However,
they can also vary erratically, showing no sign of convergence. Algorithm IRW is
clearly not competitive with Algorithm OSE in accuracy or cost.

(3) The estimates produced by Algorithm Pnorm are excellent. In almost all
cases we have tried with tol = 10 -4 they have at least two correct significant digits,
increasing to full accuracy if the tolerance is the unit roundoff. One way to
investigate worst-case behaviour of a condition estimator or norm estimator is to
apply direct search minimization, with the elements of the matrix A as the
variables. It is shown in [18] that this approach readily reveals poor estimates for
the L I N P A C K estimator and the estimator of [161. We have used the direct search
routines from [18] with Algorithms OSE and Pnorm, with r = 8, m = n < 4, and
tol = 10 -4. For Algorithm OSE the worst underestimation ratio we have produ-
ced is #rain = 0.7456 (p = 1.9), and for Algorithm Pnorm /train = 0.8017 (p = 1.5).
Interestingly, increasing r or decreasing tol has little effect on the quality of the
estimates in these two examples found by direct search (note from (3.1) that for
n = 4 and p < 2, # > 4-1/2 = 0.5.) Concerning computational cost it is interesting
to note from Table 2 that Algorithm Pnorm can require more iterations than
Algorithm PM; it can also produce smaller estimates than Algorithm PM, but in
our experience this happens only when both estimates are very accurate.

(4) The quality of the estimate from Algorithm OSE often improves when the
number of samples r is increased, particularly when p is close to 2. However,

Estimating the matrix p-norm 551

increasing r usually cannot make an inexact estimate exact. The value r = 8 seems
entirely adequate for use in Algorithm Pnorm.

6 Conclusions

The p-norm of an m x n matrix can be reliably estimated in O(mn) operations using
Algorithm Pnorm, which uses Algorithm OSE to generate a good starting vector
for the power method (Algorithm PM). The algorithm is guaranteed to produce
II A II,, exactly when A is diagonal or rank 1, or when A has nonnegative elements
and ATA is irreducible (Algorithm OSE itself is not always exact in latter case, or
when A has rank 1). The estimate is always within a factor n 1 - 1/p of II A[I r (see (3.1)).
The cost and accuracy of Algorithm Pnorm depend on the convergence tolerance
tol in (2.4). If tol = 10 -4, as in our experiments, then correct significant digits are
almost always obtained and the operation count can be estimated very roughly as
70mn flops (the number of iterations in Algorithm PM varies greatly with the
matrix A). Greater accuracy can be obtained by taking a smaller tolerance in
Algorithm PM.

A less expensive estimate can be obtained from Algorithm OSE alone, but this
estimate is more likely not to have any correct significant digits. In the case of the
2-norm Algorithm OSE is particularly efficient because each inner maximization
can be done exactly in O(m) flops via the SVD. Algorithm OSE then resembles the
I[T[[2 estimator of [5] for triangular matrices T, but it has the advantages of
working with an arbitrary rectangular matrix instead of a square triangular matrix
and in practice it gives sharper estimates than the estimator of [5]. (Note, however,
that the method of [5] also yields very good estimates for the more elusive quantity
II T- 1 II 2, given only T.)

In summary, we recommend Algorithm Pnorm for estimating [[A[lp. A
MATLAB M-file pnorm.m implementing the algorithm is listed in the Appendix. It
has the same functionality as MATLAB's built-in function norm but it works for
any 1 < p < oe for both matrices and vectors.

Appendix: Listings of MATLAB routines

These routines are available by anonymous FTP from the machine at Internet
address 130.88.16.10, in directory pub/higham.

PNORM.M

function
% PNORM
%
%
%
%
%
%

[est, x, k] = pnorm(A, p, tol, noprint)
lEST, x, k] = PNORM(A, p, TOL) estimates the p-norm of a
matrix A, using the p-norm power method with a specially chosen
starting vector.
TOL is a relative convergence tolerance (default IE-4).
Returned are the norm estimate EST, the corresponding
approximate maximizing vector x, and the number of power method
iterations k.

552 N.J. Higham

%
%

%
%
%

%

%
%
%
%

A nonzero fifth argument suppresses output to the screen.
If A is a vector, this routine simply returns N O R M (A , p).

Note: The estimate is exact for p = 1, but is not always exact for
p = 2 or p = inf. Code could be added to treat p = 2 and p = inf
separately.

Calls DUAL, and SEQA from [19,].

Reference
N.J. Higham, Estimating the matrix p-norm, Numerical Analysis;
Report No. 202, University of Manchester, October 1991;
to appear in Numer. Math.

[m, n] = size(A);
If min(m, n) = = 1, est = norm(A, p); return, end

if nargin < 4, noprint = 0; end
if nargin < 3, tol = le-4; end

% Stage I. Use Algorithm OSE to get starting vector x for power method.
% Form y = B * x, at each stage choosing x(k) = c and scaling previous
% x(k + l : n) by s, where norm ([c s] , p) = 1.

sm = 9; % Number of samples.
y = zeros (m, 1); x = zeros (n, 1);

for k = l : n

if k = =1
c = 1 ; s = 0 ;

else
W = [A(:, k) y] ;
if p = = 2 % Special case. Solve exactly for 2-norm.

[U, S, V] = svd(W);
% For Matlab 4.0 replace the previous line by the next one
% so that this routine works for sparse input A.
% [U, S, V] = svd (full (W));
c = V(1, 1); s = V(2, 1);

else

end
end

fopt = 0;
for th = seqa(0, pi, sm)

cl = cos(th); sl = sin(th);
n rm = norm ([c l s l] , p);
c l = c l /nrm; sl = s l /nrm;
f = n o r m (W . [c l s l] ' , p);
if f > fopt

fopt = f;
c = c l ; s = sl;

end
end

% [c l s l] has unit p-norm.

Estimating the matrix p-norm 553

x(k) = c;
y = x (k) , A(: ,k) + s , y ;
i f k > l , x (l : k - 1) = s , x (l : k - 1) ; e n d

end

est = norm(y, p);
if ~ noprint, fprintf('Alg OSE: % 9.4e\n', est), end

% Stage IL Apply Algorithm PM (the power method).

q = dual(p);
k = l ;

while 1

y = A , x ;
est_old = est;
est = norm(y, p);

z = A' , dua l (y , p);

if ~ noprint
fprintf('%2.0 f: norm(y) = %9.4e, norm(z) = % 9 . 4 e ' , . . .

k, norm(y, p), norm(z, q))
fprintf(' rel_incr(est) = %9.4e\n ' , (est-est_old)/est)

end

if (norm(z, q)(=z'*x[abs(est-est_old)/est(=tol) & k > 1
return

end

x = dual(z, q);
k = k + l ;

end

D U A L . M

function
% D U A L
%
%
%
%

y = dual(x, p)
Y = DUAL(X, p) is a vector of unit q-norm that is dual to X with
respect to the p-norm, that is, no rm(Y,q) = 1 and there is
equality in the Holder inequality: X ' . Y = norm(X, p) norm(Y, q).
Special case: DUAL(X) , where X > = 1 is a scalar, returns Y such

that 1/X + 1/Y = 1.

if max(size(x))= = 1 & nargin = = 1
p = x ;

end

% The following test avoids a 'division by zero message' when p = 1.
if p = = 1

q = inf;
else

q = 1/(1 - l /p);
end

554 N.J. Higham

if max(s i ze (x))= = 1 & nargin = = 1
y = q;
re turn

end

if norm(x , i n f) = = 0 , y = x; return, end

if p = = 1

y = s i g n (x) + (x = = 0) ; % y (i) = + 1 or - l (i f x (i) real).

elseif p = = inf

[xmax, k] = max(abs(x)) ;
f = f ind (abs (x)= = x m a x) ; k = f(1);
y = zeros(x);
y (k) = s ign(x(k)) ; % y is a mul t ip le of unit vector e_k.

else % 1 < p < inf. Dua l is unique in this case.
x = x /norm(x , inf); % This scaling helps to avo id under/over-f low.
y = abs(x). ^(p - 1) . . (sign(x) + (x = =0)) ;
y = y / n o r m (y , q); % Normal ize to unit q-norm.

end

Acknowledgements. I thank Des Higham for suggesting improvements to the manuscript.

References

1. Anderson, E., Bai, Z., Bischof, C.H., Demmel, J.W., Dongarra, J., Du Croz, J.J., Greenbaum,
A., Hammarling, S.J., McKenney, A., Ostrouchov, S., Sorensen, D.C. (1992): LAPACK Users'
Guide, Society for Industrial and Applied Mathematics, Philadelphia (to appear)

2. Bartels, S.G. (1991): Two topics in matrix analysis: Structured sensitivity for Vandermonde-
like systems and a subgradient method for matrix norm estimation. M.Sc. Thesis, University
of Dundee, Scotland

3. Boyd, D.W. (1974): The power method for lp norms. Linear Algebra and Appl. 9, 95-101
4. Cline, A.K. (1972): Rate of convergence of Lawson's algorithm. Math. Comput. 26, 167-176
5. Cline, A.K., Conn, A.R., Van Loan, C.F. (1982): Generalizing the LINPACK condition

estimator. In: J.P. Hennart, ed., Numerical Analysis, Mexico 1981. Lecture Notes in
Mathematics 909. Springer, Berlin Heidelberg New York, pp.73-83

6. Fletcher, R. (1987): Practical Methods of Optimization, 2nd Ed. Wiley, Chichester
7. Fletcher, R., Grant, J.A., Hebden, M.D. (1971): The calculation of linear best Lp approxima-

tions, Comput. J. 14, 276-279
8. Gastinel, N. (1970): Linear Numerical Analysis. Academic Press, London
9. Gilbert, J.R., Moler, C.B., Schreiber, R.S. (1992): Sparse matrices in MATLAB: Design and

implementation. SIAM J. Matrix Anal. Appl. 13, 333-356
10. Gillespie, T.A. (1991): Noncommutative variations on theorems of Marcel Riesz and others,

In: J.H. Ewing, F.W. Gehring, eds., Paul Halmos: Celebrating 50 Years of Mathematics.
Springer, Berlin Heidelberg New York

11. Goldberg, M., Straus, E.G. (1983): Multiplicativity of lp norms for matrices. Linear Algebra
Appl. 52/53, 351-360

12. Golub G.H., Van Loan, C.F. (1989): Matrix Computations, 2nd Ed. Johns Hopkins Univer-
sity Press, Baltimore, Maryland

13. Hager, W.W. (1984): Condition estimates. SIAM J. Sci. Stat. Comput. 5, 311-316
14. Hardy, G.H., Littlewood, J.E., P61ya, G. (1952): Inequalities, 2nd Ed. Cambridge University

Press, Cambridge

Estimating the matrix p-norm 555

15. Higham, N.J. (1987): A survey of condition number estimation for triangular matrices. SIAM
Rev. 29, 575-596

16. Higham, N.J. (1988): FORTRAN codes for estimating the one-norm of a real or complex
matrix, with applications to condition estimation (Algorithm 674). ACM Trans. Math. Soft.
14, 381-396

17. Higham, N.J. (1990): Experience with a matrix norm estimator. SIAM J. Sci. Stat. Comput.
11, 804-809

18. Higham, N.J. (1993): Optimization by direct search in matrix computations, Numerical
Analysis Report No. 197, University of Manchester, England, January 1991; SIAM J. Matrix
Anal. Appl. (to appear)

19. Higham, N.J. (1991): Algorithm 694: A collection of test matrices in Matlab, ACM Trans.
Math. Soft. 17, 289-305

20. Horn R.A., Johnson, C.R. (1985): Matrix Analysis. Cambridge University Press, Cambridge
21. Kato, T. (1976): Perturbation Theory for Linear Operators, 2nd Ed. Springer, Berlin

Heidelberg New York
22. Li, Y. (1991): A globally convergent method for Lp problems. Technical Report 91-1212.

Department of Computer Science, Cornell University, Ithaca, NY
23. Merle, G., Sp/ith, H. (1974): Computational experiences with discrete Lp-approximation.

Computing 12, 315-321
24. Moler, C.B., Little, J.N., Bangert, S. (1989): 386-Matlab User's Guide. The Math Works, Inc.,

24 Prime Parkway, Natick, MA
25. Osborne, M.R. (1985): Finite Algorithms in Optimization and Data Analysis. Wiley,

Chichester
26. Osborne, M.R., Watson, G.A. (1985): An analysis of the total approximation problem in

separable norms, and an algorithm for the total I1 problem. SIAM J. Sci. Stat. Comput. 6,
410-424

27. Sp/ith H., Watson, G.A. (1987): On orthogonal linear l~ approximation. Numer. Math. 51,
531-543

28. Schneider, H., Strang, W.G. (1962): Comparison theorems for supremum norms. Numer.
Math. 4, t5-20

29. Pham Dinh Tao, (1984): Convergence of a subgradient method for computing the bound
norm of matrices [in French]. Linear Algebra Appl. 62, 163-182

30. Todd, J. (1977): Basic Numerical Mathematics, Vol. 2. Numerical Algebra. Birkh~iuser, Basel;
Academic Press, New York

31. Van Loan, C.F. (1987): On estimating the condition of eigenvalues and eigenvectors. Linear
Algebra Appl. 88/89, 715-732

32. Watson, G.A. (1980): Approximation Theory and Numerical Methods. Wiley, Chichester
33. Watson, G.A. (1983): The total approximation problem. In C.K. Chui, L.L. Schumaker,

J.D. Ward, eds., Approximation Theory IV. Academic Press, New York, pp. 723-728

