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Abstract. 

Iterative refinement is a well-known technique for improving the quality of an approximate solution to 
a linear system. In the traditional usage residuals are computed in extended precision, but more recent 
work has shown that fixed precision is sufficient to yield benefits for stability. We extend existing results to 
show that fixed precision iterative refinement renders an arbitrary linear equations solver backward 
stable in a strong, componentwise sense, under suitable assumptions. Two particular applications 
involving the QR factorization are discussed in detail: solution of square linear systems and solution of 
least squares problems. In the former case we show that one step of iterative refinement suffices to 
produce a small componentwise relative backward error. Our results are weaker for the least squares 
problem, but again we find that iterative refinement improves a componentwise measure of backward 
stability. In particular, iterative refinement mitigates the effect of poor row scaling of the coefficient 
matrix, and so provides an alternative to the use of row interchanges in the Householder QR factoriz- 
ation. A further application of the results is described to fast methods for solving Vandermonde- 
like systems. 
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1. Introduction. 

I t e r a t i ve  r e f i n e m e n t  is an  es tab l i shed  t e c h n i q u e  for  i m p r o v i n g  a c o m p u t e d  sol- 

u t i o n  92 to  a l inear  sys tem A x  = b. T h e  p rocess  cons is t s  of  th ree  steps: 

1. C o m p u t e  r = b - A2 .  

2. So lve  Ad  = r. 

.3. U p d a t e  y = )2 + d. 

(Repea t  f r o m  step 1 if  necessary ,  w i t h  2 r ep l aced  by  y). 

Received July 1990. Revised March 1991. 
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Traditionally, the method is used with Gaussian elimination, and r is computed in 
extended precision before being rounded to working precision. Iterative refinement 
for Gaussian elimination was used in the 1940s on desk calculators, but the first 
thorough analysis of the method was given by Wilkinson in 1963 [35]. The 
behaviour of mixed precision iterative refinement is now well understood (see 
[15, 25, 32] for example): if double precision is used in the computation oft, and A is 
not too ill-conditioned, then the iteration produces a solution correct to working 
precision, and the rate of convergence depends on the condition number of A. 

In the last ten years or so an alternative usage o~ iterative refinement has gained 
popularity, in which the residual is computed in the working precision. This interest 
in fixed precision iterative refinement was prompted by two papers that appeared in 
the late 1970s. Jankowski and Wo~niakowski [23] proved that an arbitrary linear 
equation solver is made backward stable by the use of fixed precision iterative 
refinement, as long as the solver is not too unstable to begin with and A is not too 
ill-conditioned. Skeel [30] proved that Gaussian elimination with partial pivoting 
becomes stable in a much stronger sense than usual after just one step of fixed 
precision iterative refinement, again under suitable assumptions. 

The purpose of this work is to show that an arbitrary linear equation solver can be 
made stable in the strong, componentwise sense considered by Skeel with the use of 
fixed precision iterative refinement, as long as certain mild conditions are satisfied. 
In a sense this result combines the best features of the results of Jankowski and 
Wo~niakowski and of Skeel. The result has three particularly interesting implica- 
tions: 
1. QR factorization with iterative refinement for solving Ax = b matches the stabil- 

ity of Gaussian elimination with partial pivoting and iterative refinement. 
2. QR factorization with iterative refinement for solving least squares problems 

yields a small componentwise backward error, asymptotically, and consequently 
the overall method is insensitive to poor row scaling of the coefficient matrix. 

3. The fast methods for solving Vandermonde-like systems of [11, 13, 17, 18] are 
numerically stable when coupled with iterative refinement. This had previously 
been observed empirically, but theoretical explanations were lacking. 

The outline of this paper is as follows. In section 2 we develop results for fixed 
precision iterative refinement with an arbitrary linear equation solver. For the 
particular case of Gaussian elimination we compare our results with those of Skeel. 
We also discuss the application of our results to fast algorithms for solving Vander- 
monde-like systems. In section 3 the results of section 2 are applied to the method of 
QR factorization for solving linear systems. Numerical experiments are reported to 
illustrate the theory. 

The least squares problem is considered in section 4. We analyze iterative 
refinement applied to the augmented equations in conjunction with a QR factoriz- 
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ation. We obtain an asymptotic result which shows that iterative refinement leads to 
a small componentwise backward error. Again, numerical experiments are in- 
cluded. 

The work in sections 3 and 4 makes use of a componentwise error analysis for the 
Householder and Givens QR factorization algorithms. Since traditional error 
analyses for these algorithms involve normwise bounds we had to develop a new 
componentwise analysis. The results of the analysis are stated in an appendix, and 
the proofs may be found in [20]. 

For  an excellent, up to date survey of both fixed and mixed precision iterative 
refinement and their applications see [9]. 

We stress that in this work we concentrate exclusively on fixed precision iterative 
refinement, and we will often refer to it simply as "iterative refinement". 

2. Main result. 

To assess the stability of linear equation solvers with iterative refinement we will 
use the notion of componentwise relative backward error. The componentwise rela- 
tive backward error for an approximate solution y to Ax = b, where A e E" ×", is the 
quantity 

(2.1) co(y) = min {e:(A + AA)y = b + Ab, IAAI <_ etAl, IAbl <_ etbl}, 

where matrix absolute values and inequalities are interpreted componentwise. Thus 
co is the size of the smallest perturbation we have to make to A and b for y to be an 
exact solution of the perturbed system, where each individual perturbation is 
measured relative to the element that it perturbs. Note that co can be much larger 
than the normwise relative backward error 

(2.2) r/(y) = min{e:(A + AA)y = b + Ab, [IAAII < ~llall, IIAbll < ~llbll}. 

In fact, co may be infinite, in which case no perturbations of the specified structure 
exist. 

When working in floating point arithmetic with unit roundoff  u the best that we 
can hope for is co ~ u. The question we are interested in is whether iterative 
refinement helps to achieve this goal. A result of Oettli and Prager [26] provides the 
convenient expression 

tb - Ayli (2.3) co(y) = max 
(IAIlYl + Ibi)~" 

where (/0 is interpreted as zero if ( = 0 and infinity otherwise. Thus the approach we 
take in our analysis is to attempt to bound I b -  Ayl by a scalar multiple of 
IAIlYl + Ibl. 



450 NICHOLAS J. HIGHAM 

We will use the following model of floating point arithmetic, which allows for 
possible lack of a guard digit in addition and subtraction: 

f l(x op y) = (xop y)(1 + 6), 161 <- u, op = . , / ,  

(2.4) f l (x  + y) = x(1 + ~) _+ y(1 +/~), t~1,1/~1 - u, 

fl(~/x) = ~/x(1 + a), lal _< u. 

Computed quantities are denoted with a hat. 
To make our analysis as widely applicable as possible we make only very general 

assumptions about the linear equation solver and the method for computing the 
residual. We assume that the computed solution 2 to Ax  = b satisfies 

(2.5) Ib - A2t <__ u(g(A, b)12{ + h(A, b)) 

where g: ~ ,×( ,+1)+ ~,×,  and h: ~"×( '+*)~ R" have nonnegative entries. The 
functions g and h may depend on n and u as well as on the data A and b. We also 
assume that the residual r = b - A2  is computed in such a way that 

(2.6) If - rl <_ ut(A, b, it), 

where t: ~" ×(n+z) ~ ~,  is nonnegative. It is straightforward to show that if r is 
computed in the conventional way, in the working precision via inner products or 
saxpy operations, then we can take 

(2.7) t (A,b,2)  = ~"+x (IZll~l + Ibl), 
u 

where 7k - ku/(1 - ku). 

THEOREM 2.1. Let A ~ ~"×" be nonsingular. Suppose the linear system A x  = b is 
solved in floating point arithmetic using a solver S together with one step of  iterative 

refinement. Assume that the computed solution fc produced by S satisfies (2.5) and that 
the computed residual ~ satisfies (2.6). Then the corrected solution fJ satisfies 

(2.8) Ib - Aigl <<- u(h(A, ~) + t(A, b, f:) + IAIlyl) + uq, 

where q = O(u) if  t(A,b, fc) - t(A,b,~) = 0(I12 - )'tiz). 

PROOF. The residual r = b - A2  of the original computed solution ~ satisfies 

(2.9) trl < u(g(A, b)l~l + h(a, b)). 

The computed residual is f .= r + Ar, where IArl < ut(A, b, ~). The computed correc- 

tion d satisfies 

(2.10) Aa = ? + f , ,  tf~l < u(g(h,?)tdl + h(A,~)). 
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Finally, for the corrected solution we have 

(2.11) ~ = jq(~ + ,/) = ~ + a + f2, 

Collecting together the above results we obtain 

Hence 

(2.12) 

where 

If21 ~ u(l~l + Idl). 

b - A~  = b - A Y c  - A d  - Af2  

= ~ - d r  - A d  - Af2  

- -fl A r - A f 2 .  

Ib - APl <- u(g(A, e)ldl + h(A, ~)) + ut(A, b, Yc) + ulAl(l~l + Idl) 

= u(h(A,f) + t(A,b,p) + IAIIPl) + uq, 

q = t(A, b, Yc) - t(A, b, ) )  + g(A, f)ldl + IAI(I~I -I~1 + laD. 

The claim about the order of q follows since ~ -j~,  I~{- 1£1 and 3 are all of 
order u. • 

Theorem 2.1 shows that, to first order, the componentwise relative backward 
error co will be small after one step of iterative refinement as long as h(A, ?) and 
t(A, b, ~) are bounded by a modest scalar multiple of IAII.~I + [bl. This is true for t if the 
residual is computed in the conventional way (see (2.7)), and in some cases we may 
take h ---- 0, as shown below. Note that the function g of(2.5) does not appear in the 
first order term of (2.8). This is the essential reason why iterative refinement works: 
potential instability manifested in g is suppressed by the refinement stage. 

A weakness of Theorem 2.1 is that the bound (2.8) is asymptotic. Since a strict 
bound for q is not given it is difficult to draw firm conclusions about the size of co. 
The next result overcomes this drawback, at the cost of some specialization (and 
a rather long proof). 

We introduce the condition number of Skeel [29] 

(2.13) cond(B) = ff tB- ' l  IBI If~, 

and the measure of ill-scaling of the vector IBI Ixl 

o(B, x) - max/(IBt txt)i 

mini(lBl lxl)i " 

THEOREM 2.2. Under  the conditions o f  Theorem 2.1, suppose that g(A, b) = GIA[ 

and h( A, b) = Hlb[, where G, H ~ R n x n have nonnegative entries, and that the residual is 
computed  in the conventional  manner.  T h e n  there is a funct ion  

f ( t l ,  t2) .~ (t2(tx + n + 1)/cond (A- 1) + 2(tl + n + 2)2(1 + ut2)=)/(n + 1) 
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such that if 

then 

PROOF. 

have 
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cond (A - ~)a(A, )3) < (f(ll G tl ~, II H l] oo)u) - * 

Ib - A~[ ~ 23,,+~1A1 Lgl. 

F rom (2.12) in the p roof  of  Theorem 2.10 using the formula (2.7) for t, we 

(2.14) jb - API <~ uHIfl + y,+llbl + (Vn+, + u)lAI I&l + u(I + G)IAt ]al. 

The inequality (2.9) implies 

Ibl - I A I  I~1 Ib - heel <_ u(alhl I~i + nlbl), 

or (I - uH)1bl < (I + uG)IAI I~f. Ifull HII o0 < ~ (say) then I - uH is nonsingular with 
a nonnegative inverse satisfying IF(I-  un)  -1 I[ ~ -< 2 and we can solve for Ibl to 
obtain tbi < (I - u H ) - l ( I  + uG)IAI I~1- It follows from this relation and consider- 
at ion of the rest of the p roof  that the simplifying step of replacing b by 0 in the 
analysis has little effect on the bounds  - it merely produces unimportant  perturba- 
tions in f in the statement of the theorem. Making this replacement in (2.14), and 
approximat ing 7,+1 + u ~ y .+l  we have 

(2.15) [b - A)31 < uH]f[ + yn+ I]A[ I~[ + u(l + G)IAI [al. 

Our  task is now to bound  [At t~1, Ill and IAi tdl in terms of  I)31- By manipulat ing 
(2.11) we obtain the inequality 

(2.16) [~l < (1 - u)-1(1)31 + (1 + u)ta[) ---I)31 + tal. 

Also, we can bound  Ill by 

Ill -< Irl + lad < u(alal l~tl + nlbl) + 7,+ l(Ihl l~ + Ibl), 

and dropping the Ibl terms and using (2. I6) gives 

(2.17) If[ < (ua + ~',+II)IAI I~l < (ua + 7n+lI)IAI(I)31 + ial). 

Substi tuting from (2.16) and (2.17) into (2.15) we find 

Ib - A)31 <_ un(uG + y,+~I)lal(l)31 + lffl) + 7,+~IAI(IP[ + ldl) + u(I + a)la] I~1 

= (7.+~I + u n ( u a  + 7n+lI))lhl I)31 

+ (Y ,+ l I  + u(I + G) + uH(uG + 7,+,I))IAI 131 

-- (~'.+,I + MI)IAI I)31 + MzlAI IJI, (2.18) 

where 

HM~LI~ <- ullHtto~(uttGLl~ + 7n+~), 

HM2lloo ~ ~ + 2  + ullGIt~ + ullHllo~(ullGIIo~ + ~n+~), 
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N o w  from (2.10), making use of (2.17), 

Idl = IA-1(¢ + fl)l 

___ IA-11(l~l + uGIAI 1,71 + uHIfl) 

_< IZ-q ( ( I  + uH)(uG + Tn+xI)lAl(191 + Idl) + uGIAI 

After pre-multiplying by IAI this may  be re-arranged as 

( I -  uMa)lAI l a l -  ulhl IA-1IM4IAI [Pl, (2.19) 

where 
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taD. 

M3 = IAI IA-11((I + uH)(G + (y.+ ,/u)I) + G), 

M4 : (I + uH)(G + (?.+ l/U)I t. 

Using ?n+l/u < (n + 1)/(1 - (n + 1)u) -~ n + 1, we have the bounds 

IlMallo~ - cond(A-1)(llGl[ ~ + n + 1)(2 + ullnll~), 

I[M411o~ -< (llGIIo~ + n + 1)(1 + ullnllo0. 

IfullMa II ~ < 1/2 (say) then (1 - uMa)- 1 > 0 with I1(1 - uMa)- 111~ < 2 and we can 
rewrite (2.19) as 

(2.20) Ial lal _< u ( I - u M 3 ) - q a l  IA-11M41AI I~1. 

Substi tuting this bound  into (2.18) we otain 

(2.21) [b - A~I < (Tn+l I + M1 + uM2(I -- uM3)-IIAI IA-1}M4)IAI I~1 

= (Vn+lI + Ms)IAI I~1 

< colal I~1, 

where co = 7n+1 + IIM5 II ~ a(A,Y). 

Finally, we bound  IIMsIl~o. Writing 9 = Ilallo~,h = IIH]loo, we have 

IIMsII~ < u2eh + uhT,,+l + 2u(T~+2 + ug + uZ~h + uh?,,+l)" 

• cond  (A-1)(  9 + n + 1)(1 + uh) 

and this expression is approximate ly  bounded  by 

u2(h(g + n + 1) + 2(9 + n + 2) 2 (1 + uh) 2 cond (A-1)). 

Requiring ][ M5 II o~ ~r(A, 9) not  to exceed 7~ + 1 leads to the result. • 
Theorem 2.2 says that  as long as A is not  too ill-conditioned and IAI 191 is not  too 

badly scaled (cond (A-  1)a(A, ~) is not  too large) and the solver S is not  too unstable 
(f(ll G II ~, II n II ~) is not  too  large) then co < 27, + 1 after one step of iterative refine- 
ment. No te  that  the term ~ + l l a l  13~1 in (2.21) comes from the error  bound  for 
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evaluation of the residual, so this bound for co is about the smallest we could expect 
to prove. 

It is instructive to apply Theorem 2.2 to Gaussian elimination and to make 
a comparison with results of Skeel. Suppose, then, that the solver S is Gaussian 
elimination with or without pivoting, and in the latter case assume (without loss of 
generality) that no interchanges are required. Standard error analysis results (see, 
e.g., [22]) show that in (2.5) we can take 

g(A,b) = c.lLI I01, h(A,b) = O, 

where L, 0 are the computed LU factors of A and c, ~ n. To apply Theorem 2.2 we 
use A ~- L 0  and write 

g(A,b) ~- c.tLl IL-'A] <_ c.lLJ tL-~I ]At, 

which shows that we can take G=c,]L] ]L -z] and f(]lGll~, tlHll~)--- 
2nu]l ]L] ]L- 1] ][~. Without pivoting the growth factor-type term ]] ]L[ tL- 1] ]t 00 is 
unbounded, but with partial pivoting it cannot exceed 2" and is typically O(n) [33]. 

We can conclude that for Gaussian elimination with partial pivoting one step of 
iterative refinement will usually be enough to yield a small componentwise relative 
backward error as long as A is not too ill-conditioned and ]A[ ]p] is not too badly 
scaled. Without pivoting the same holds true with the added proviso that the 
computation of the original ~ must not be "too unstable". Some numerical experi- 
ments are reported in the next section. 

Note that for some special classes of matrix the componentwise relative backward 
error is guaranteed to be small for the original ~ produced by Gaussian elimination 
without pivoting; see [22] for details and references. In such cases there is no benefit 
in doing iterative refinement in fixed precision. 

These results for Gaussian elimination are very similar to those of Skeel [30]. The 
main differences are that Skeel's analysis covers an arbitrary number of refinement 
steps with residuals computed in single or double precision, his analysis is specific to 
Gaussian elimination, and his results involve o-(A, x) rather than ~r(A, p). Our state- 
ments and proofs of Theorems 2.1 and 2.2 were strongly influenced by the work in 

[30]. 
A second application of our results is to methods given in [13, 11, 17, 18] for 

solving n × n Vandermonde systems in O(t/2) operations. It is known that some of 
these methods can be unstable, but practical experience indicates that iteratlve 
refinement usually cures the instability [17, 18]. An error analysis covering all the 
algorithms is given in [18, Theorem 3.2] and it shows that a result of the form (2.5) 
holds (with h = 0). Hence Theorem 2.1 is applicable. (Theorem 2.2 is not directly 
applicable because g(A, b) is not of the form GIAI.) 

When solving Vandermonde systems the coefficient matrix is usually not avail- 
able, so residuals are computed using some form of nested multiplication. In the case 
of (confluent) Vandermonde matrices based on the monomials, the residuals are 
formed using Homer's  rule, and it is straightforward to show that (2.7) holds (error 
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analysis of Horner's rule is given in [35, pp. 36-37], for example). Hence for standard 
Vandermonde matrices Theorem 2.1 leads to an asymptotic componentwise stabil- 
ity result. For (confluent) Vandermonde-like matrices based on orthogonal poly- 
nomials the residuals are computed using an extension of the Clenshaw recurrence 
[18, 31]. A complete error analysis of this recurrence is not available but it is easy to 
see that (2.7) will not always hold. Nevertheless it is clear that a normwise bound can 
be obtained (see [27] for the special case of the Chebyshev polynomials) and hence 
an asymptotic normwise stability result can be deduced from Theorem 2. t. Thus our 
results provide theoretical backing for the use of iterative refinement with fast 
solvers for Vandermonde systems. 

3. QR factorization for linear systems. 

In this section we consider the use of fixed precision iterative refinement with QR 
factorization methods for solving Ax = b, where A ~ ~" ×". Specifically, we suppose 
that a QR factorization A = QR is computed using Householder or Givens trans- 
formations and x is obtained by solving Rx = Qrb. 

Since we are interested in the componentwise relative backward error we need 
a componentwise backward error result for QR factorization solution of Ax = b. 
The standard result is expressed in terms of norms: from Wilkinson's analysis of 
Householder or Givens QR factorization and back substitution [36, pp. 236, 240, 
247] it follows that the computed ~ satisfies 

(3.1) (A + AA)Yc = b + Ab, ]]AAI]2 < p(n)ullAll2, IlAbl[2 < p(n)ullbl[2, 

where p(n) is a linear polynomial. This result shows that the normwise relative 
backward error r/(~) is small. 

We have carried out a detailed componentwise error analysis, the result of which 
is presented in the appendix. Lemma A. 1 shows that ~ satisfies 

(3.2) lb - aYcl <_ u(GlZl 121 + nlbl), 

where tlalI2 and ttnlI2 are both bounded by a low degree polynomial in n. The 
matrices G and H have no special structure, and so (3.2) suggests that the com- 
ponentwise relative backward error need not be small when x is computed via a QR 
factorization. In fact, we know of no class of A for which Householder or Givens QR 
factorization is guaranteed to yield a small componentwise relative backward error. 

Suppose, then, that we carry out a step of iterative refinement, to obtain ~. By the 
form of the bound (3.2) we can invoke Theorem 2.2. We conclude that the com- 
igonentwise relative backward error re(p) will be small as long as A is not too 
ill-conditioned and IAI IPf is not too badly scaled. This is, of course, precisely the 
same conclusion as for Gaussian elimination with partial pivoting (GEPP). 

This conclusion is interesting because it sheds further light on the comparison 
between the competing methods of QR factorization and GEPP for solving linear 
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systems. The accepted reasoning is that GEPP is faster but QR factorization has 
guaranteed stability (in the sense of normwise backward error). We have shown that 
QR factorization matches GEPP in the ability to produce a small componentwise 
relative backward error when combined with iterative refinement. Concerning 
speed, Golub and Van Loan [15, p. 257] comment 

The flop counts tend to exaggerate the Gaussian elimination advan- 
tage. When memory traffic and vectorization overheads are considered, 
the QR approach is comparable in efficiency. 

The two methods for solving Ax = b therefore seem to be quite closely matched - 
for general, dense matrices, at least. 

We have carried out numerical experiments in MATLAB to investigate the 
practical performance of iterative refinement. We used Householder QR factoriza- 
tion and Gaussian elimination both with and without partial pivoting. For each 
method we computed for each iterate z the componentwise relative backward error 
co(z) using (2.3) and took "co(z) < u" as the termination criterion. In our MATLAB 
computing environment u = 2-s2 ~ 2.22 x I0-16. Some selected results are pres- 
ented in Tables 3. t-3.7. In the columns of the tables are reported the co values for 
each method. "Fail" in the GE column denotes that Gaussian elimination broke 
down with a zero pivot. Also reported are the standard condition number x~(A) = 
1I A It ~ II A-  1 II ~, the condition number appropriate to componentwise perturbations 
in the data, cond (A) = I[ IA- 11 Ihl II co of(2.13) (which is no larger than ~o(A)), and 
O(A, x) = cond (A-  1)a(A, x), which is the quantity that certainly must not exceed u-  
if we are to be able to conclude from Theorem 2.2 that one step of iterative 
refinement suffices for these methods. 

The matrices referred to in the tables are from the test collection [19]. Briefly, 
element(n) is tridiagonal with zero diagonal entries, invhilb(n) is the inverse of the 
Hilbert matrix, pascal(n) is a positive definite matrix made up from the entries of 
Pascal's triangle, compan(n) is a companion matrix, orthog(n) is a symmetric and 
orthogonal matrix, and gfpp(n) is a matrix for which the growth factor for GEPP is 
maximal. In each case the right-hand side b was chosen as a random vector with 

elements between 0 and 1. 
The results show several noteworthy features. 
GEPP performs as predicted by our analysis and by Skeel's analysis. In fact, 

iterative refinement converges in one step even when O(A, x) > u-  ~ in the examples 
reported and in most others we have tried. GE also achieves a small componentwise 
relative backward error, but can require more than one refinement step, even when 

O(A, x) is small. 
QR factorization with iterative refinement performs as predicted by our analysis. 

In most of the examples we tried where O(A, x) > u-  l the refinement still converged 
but took two iterations. 
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Over the whole body of tests it was noticeable that the componentwise relative 
backward error for the original QR solution was usually larger than that for the 
original GEPP solution, by a factor typically between 2 and 10 (for n _  50). 
A consequence is that the refinement step was needed more often for the QR method 
than for GEPP. 

It is worth stressing that the QR factorization yielded a small normwise relative 
backward error in every case (I/(2) < u, in fact), as it must, in view of (3.1). For GEPP, 
r/(2) ~ 3 x 10- 4 for A = gfpp (50), but r/(2) < u in the other cases reported. 

We note that Arioli, Demmel and Duff [2] have shown how to sidestep difficulties 
with iterative refinement of Gaussian elimination caused by a large value of a(A, x) 
(as is likely to arise when A and x are sparse). Their approach is to relax the definition 
of componentwise relative backward error as follows: if 

(IAI b'l + lbl)i < lO00nu(llA(i,:)ll~llyllo~ + lbil), 

then the inequality IAbh < elbll in (2.1) is relaxed to IAbli <_ ellA(i, :)IIIIIYll ~, which 
amounts to replacing [b~l in the denominator of (2.3) by [I A(i, :)[I 111Y l[ o~. (Here, A(i, :) 
denotes the ith row of A.) See [1] for more details. Although this strategy was 
developed with Gaussian elimination in mind it applies equally well to the QR 
factorization. 

Finally, we mention row equilibration. Here, we solve the scaled system 
(DA)x = Db by GEPP or QR factorization, where B = DA has rows of unit 1-norm. 
This approach avoids the effects ofpoor row scaling, andwehavex~(B) = cond(A). 
However, as explained in detail in [14], there is no guarantee that row equilibration 
will lead to a small componentwise relative backward error, and so row equilibra- 
tion is a less powerful tool than iterative refinement. 

Table 3.1. c~ values for A = d e m e n t  (10) 

O(A,x) = 3.85e6 

cond(A) = 9.80e0, t%(A) = 4 .18e l  
G E P P  G E  QR 

1.91e-13 Fa i l  2 ,37e-12 

2 .52e-17 9 .98e-17 

Table 3.3. m values tbr A = p a s c a l  (10) 

O(A,x) = 2 .74e12 

cond(A) = 5.02e8, x~o(A) = 8.13e9 
G E P P  G E  QR 

2.70e-15 6 .77e-18 8 .73e-14 
3 .88e-17 6 .92e-18 

Table 3.2. co values for A = invh i lb  (10) 

O(A,x) = 3.99e18 

cond(A) = 5.92e12, r ~ ( A )  = 3.54e13 
G E P P  G E  QR 

1.02e-16 1.25e-17 1 . 9 8 e - l l  

1.73e-15 
4 .96e-17 

Tabel 3.4. co values for A = c o m p a n  (25) 

O(A,x) = 1.36e6 

cond (A) = 2 .95e l ,  x~(A) = 4.37e3 
G E P P  G E  QR 

2.08e-14 2 .08e - I4  6 .43e-15 
1.98e-17 1.98e-17 1.98e-17 
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Table 3.5. e) values for A = orthog (25) 

0(A, x) = 3~02el 
cond (A) = 2.09el, ~ ( A )  = 2.10el 
GEPP GE QR 

2.53e-16 4.61e-07 4.54e-t6 
4.59e-17 1.56e-13 5.3te-17 

4.34e-17 

Table 3.7. e) values for A = gfpp (50) 

O(A,x) = 4.51e2 
cond (A) = 50, s:~,(A) = 50 

GEPP GE QR 

8.03e-04 8.03e-04 3.22e-16 
8.06e-17 8.06e-17 3.82e-17 
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Tabel 3.6. oJ values for A = clement (50) 

O(A, x) = 2,40el 8 
cond (A) = 1.44e6, K~(A) = 3.50e7 
GEPP GE QR 

3.88e-t5 Fail 1.43e-07 
7.74e-17 LO4e-15 

6.71e-17 

4. Least squares by QR factorization. 

Let A ~ N" x, be of full rank n _< m and let b e N". Ifx solves the least squares (LS) 
problem minx ttAx - bfIz then 

since this augmented system of dimension m + n is a representation of the normal 
equations A r A x  = Arb.  It is well-known that an approximate LS solution 2 can be 
improved by applying iterative refinement to the augmented system [5, 6, 12], but it 
is usually assumed that double precision is used when calculating the residuals. 

In some recent work the use of single precision iterative refinement on the 
augmented system has been considered. Bj6rck [8] states without proof that 
iterative refinement yields benefits for a certain componentwise measure of stability 
(namely/~ in (4.6) below) when the solution method is based on a QR factorization of 
A. Arioli, Duffand de Rijk [2] make a thorough study ofiterative refinement for the 
case. where A is sparse and the solution method is Gaussian elimination with 
symmetric pivoting applied to the whole augmented system. They draw on Skeel's 
analysis of iterative refinement for Gaussian elimination. We also mention in 
passing that Bj6rck [-7] analyses fixed precision iterative refinement applied to the 
so-called "semi-normal equations" for the LS problem. 

In this section we analyze fixed precision iterative refinement for the augmented 
system with Householder orGivens QR factorization as the method of solution. The 
outline is as follows. First we provide some theoretical support for this application 
of iterative refinement, by using componentwise error analysis together with The- 
orem 2.1 to obtain a bound for the residual of the augmented system after one step of 
refinement. Based on this bound we identify an appropriate definition of backward 
error, and show this backward error to be small, asymptotically. We observe that in 
small residual problems it can be difficult to achieve a small backward error, and we 
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suggest practical ways to overcome this difficulty. Finally, we describe some numeri- 

cal experiments. 
To begin, we recall the well-known result that the Householder and Givens QR 

factorization algorithms provide a stable way to solve the LS problem in the sense of 
normwise backward error (see [24]). There is no reason to expect any component- 
wise measure of backward error to be small, but Theorem 2.1 suggests that iterative 
refinement applied to the augmented system may help to achieve this goal. 

The analysis ofiterative refinement is more difficult for the LS problem than it is 
for a general square linear system, This is largely due to the following three reasons, 
to which we will return later in the section. 

1. No explicit formula is known for any backward error of a general approximate 
LS solution y (see [21] for a detailed discussion). 

2. A perturbation in A results in a special, symmetric perturbation of the coefficient 
matrix in (4.1). 

3. If we are interested only in x, then r in (4.1) can be regarded as an arbitrary vector 
parameter that can be chosen to minimize the backward error. 

In the appendix we give the result of a detailed componentwise error analysis for 
the solution of the system 

(4.2) [~r ~] [~]=[gf] 
via a Householder or Givens QR factorization of A. We allow 9 ~- 0 in (4.2) (cf. 4.1)) 
so that the analysis is applicable to the refinement step as well as to the initial 
solution phase. Lemma A.2 implies that the computed solution (fr, ycr)r to (4.2) 
satisfies 

~] [#] I < F#m'"G'A' '#'+#','(H"f'+H2[r')l 
- L tt,,,,IATIGTIfl + ~,,,,IArlH31~I J 

<I~.,n([[AHT, ~ G~A[] Fl#ll+[~1 0o3 r]fll'~, 
- LI~IJ L l g l J /  

where (7 = G T +/-/3,/~,,,, is approximately the product of the unit roundoffu with 
a linear polynomial in m and n, and all these G and H matrices are bounded in norm 
by low degree polynomials in rn and n. If we express this bound in the form of (2.5) 
then 

"g(A,b)"= P""[ H2 G~A[ 1 
u lAg'l(7 

u LlalJ 
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where the A and b inside the quotes denote the matrix and right-hand side of the 
linear system (4.2) and not the data of the LS problem. To apply Theorem 2.2 we 
would need to express "g(A, b) = ~]AI", that is, 

u _ ( ~  I 

Unfortunately, this cannot be done in any useful way. 
Since Theorem 2.2 is not applicable, we turn to Theorem 2.1, which tells us that 

the corrected solution (gr, pr)r obtained after one step of iterative refinement 
satisfies (with terms re-ordered from (2.8)) 

I o ....[o :] + ':'] [;:',] 

Here, (f~, ~ ) r  denotes the residual of the augmented system corresponding to the 
original computed solution, and we are assuming this residual is computed in the 
usual way, so that (2.7) holds. We will make two simplifications to the bound (4.3). 
First, since (~, p~)r = O(U) the first term in the bound may be included in the O(u 2) 
term. Second, (4.3) yields [b - ~ - A3~I = O(u) and so Igl < IAI I)} + Jbl + O(u). With 
these two simplifications, together with 7m+,+ 1 + u < 7,~+,+2, (4.3) may be written 

(4.4) [~]--[/T ~] [ ~ ]  < 27m_ +.+2([IAOTI IAI t kl)) uFIsll + [IboI])+O(u2)" 

To interpret this inequality in backward error terms we consider a perturbed 
augmented system 

and we define 

(4.6) fl(f, 2) = min {~:(4.5) holds with LAAil <~ ~lAk i = 1:2, IAbj <_ ejb[}. 

By appealing to the most general form of the Oettli-Prager result (in which tAI and tbl 
in (2.1) and (2.3) are replaced by arbitrary E _> 0 and f > 0) we obtain the expression 

:] [;-]I, 
(4.7, fi(f,~) = max ( [  0 i~i] F,r-lq + rlbJl ~ 

IAI r LIeU L oj/ ,  

{ lb-(~+A#)', a JATr-], } 
. . . .  , m  x = max max ~,~ I.~1 + lbl), ~ (IMT! It-I), 
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From (4.4) it follows tha t / f  the O(u 2) terms can be neglected then fl(~, ~) < 27,.+,+ 2. 
The backward error fl(f, ~) was introduced by Bjfrck [8]. Strictly, it should be 

called a pseudo componentwise backward error because it allows the two occurren- 
ces of A in the augmented system to undergo different perturbations and this does 
not correspond in any simple way to perturbing the original data of the LS problem. 
(It is shown in [16] how to compute the genuine componentwise backward error 
that results when AA1 = AA2 is forced in (4.6).) 

Two important properties of 3 are as follows (see [21], [10] or [2] for further 
details): 
t. If the rows or columns of A are scaled then the class of perturbations A A ,  Ab in 

the definition of 3 scales in the same way. Hence fl is invariant under row and 
column scalings of A. 

2. A bound for the forward error Hx - Yl[2 can be obtained in terms of fl- This 
bound is potentially much smaller than the standard forward error bound for the 
LS problem involving K2(A) (partly because of its better scaling properties). 
Moreover, it is identical to the bound that would be obtained if the perturbations 
AA 1 and AA2 were equal - in other words, allowing AA 1 # AA2 in the definition 
of/7 does not weaken the corresponding forward error bounds. 

To summarize, we have shown that, asymptotically, the backward error fl(g, ~) is 
small after one step of iterative refinement. It is not clear how to obtain a more 
precise result, analogous to Theorem 2.2, say (not even if we switch to using norms in 
the definition of fl). However, we can obtain further understanding from some 
simple observations and numerical tests. 

An easily identifiable case where our asymptotic result is dubious is when the 
residual for the LS problem is zero or relatively small, i.e., when lit II z/(llA II z tlx [I 2) = 
O(u). In such cases the computation of r will be subject to severe numerical 
cancellation and the computed ~ is likely to have few correct significant digits. As 
a result, the inequality IArgl <_ elAr[ [gl cannot be guaranteed to hold with e = O(u), 
and so in view of (4.7) we cannot always expect 3(g, Y) = O(u). One way to accommo- 
date this difficulty is to adopt the technique of Arioli, Demmel and Duff, which we 
mentioned at the end of section 3, and thus to allow a wider class of perturbations in 
the fight-hand side in the definition of 17. This approach was used in the LS context 
by Arioli, Duff and de Rijk [2]. Further details are given below. 

Another useful observation is that since f may be regarded as an arbitrary 
parameter it may be beneficial to replace it by zero if the true residual is small. If we 
set f = 0 in (4.7) the troublesome ArF term disappears and we are left with 

[b - Affli 
3(0, 2) = max 

, (tAI 121 + Ibl), 

(which, of course, is essentially (2.3)). After iterative refinement has converged, or has 
been terminated, we can check whether fl(0, p) < fl(g, p), and, if so, regard fl(0, p) as 
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the backward error  for the augmented system. It may  be worthwhile to take fl(0, y) as 
the backward  error  even when fl(0, ~) > fl(£ y), because the corresponding forward 
error  bound  is minimized as a function of the residual ~ when 7 = 0 [2, 10, 21]. 

We have experimented with the iterative refinement procedure  discussed above 
using MATLAB.  We repor t  results for three problems. 

(1) Problem PR. The matr ix [o2] 
A = 106 106 10 

10 6 0 1016 
0 1 

is from [28-] and we took  b = (1, 1, 1, 1) r. 
The  following two classes of test problems were suggested by Bj6rck [7]. 
(2) Problem V. The matr ix A e ~21 × 6 has the form A = VD where vi~ = (i - 1) j -  1 

and the diagonal  matr ix D is chosen so that  the columns of A have unit 2-norm. The 
solution vector is taken to be x = D -  l(10s, 104,.. . ,  1) and the r ight-hand sides are 
defined by b = Ax  + Oh, where Arh = 0 with h normalized so that 

~2(A) 11 h II 2 = 1.5 II A I12 II x [[ 2. The scalar 0 controls  the size of the residual. Problems 
where the coefficient matr ix has widely differing row norms are obtained by 
choosing w >> 1 and setting Dw = diag (di), where dl = w for i = 1, 11, 21 and di = 1 
otherwise, and defining Aw = DwA, bw = Dwb and hw = D~ lh. 

(3) Problem H. Here, A e ~6 × 5 comprises the first five columns of the inverse of 

the Hilbert  matr ix of order  6. The solution vector is given by xi = 1/i, and 
b = A x  + Oh where Arh = 0 and/¢2(A)[lhl[2 = 3.72 x 103IlA[12]lxl[2 . 

The  details of our  implementat ion of iterative refinement are as follows. We used 
Householder  QR factorization and solved the augmented system (4.2) as prescribed 
in the appendix (see the explanat ion following (A. 1)), For  the convergence test we 

took  fl(~, 3)) _< u, where, based on (4.7), fl(f, ~) = max {fll,fl2} with 

Ib - O" + A~)I, 
f l l  = max 

([AI 121 + [b])i ' 

]AT£[i 
f12 = max ([A T] VI)~ + ~* 

and where, with 

=- {i:([ATllf[)i <_ z i -  1000(m + n)uHA(:, i)]1 o0 H(rT, XT)[t ~}, 

f[IA(:,i)HI[I(fT, xT)]]o~, if i e Y ,  

/~i = [0,  otherwise. 

The values of #~ and ~ are those recommended in [1] and used in [2] (see our  
comments  at the end of section 3). U p o n  convergence we can assert that  the 
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computed ~ and p satisfy 

(4.8, [(A 1 A + o A 1 ]  [b+Ab-], 
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where IAAil < ulA[, i = 1,2, IAbl ~ u[bt and IAcll ~ u#~ if ie ~ or Ac~ = 0 other- 
wise. (We could of course extend the use of the tolerances T~ and #~ to the first m of the 
augmented equations, as in [2], but this was not necessary in our tests with dense 
matrices.) 

Selected results are reported in Tables 4.1-4.5. The notation is as follows. The 
coefficient matrix of the augmented system is denoted by C; cond (A) = [I [A +l [AI II 
is a generalization of the condition number (2.13) and appears in forward error 
bounds of [2, 21] (A + is the pseudo-inverse of A); and p(x) is a computed approxi- 
mation to the relative residual II b - Ax II 2/(11A II 2 tl x II 2) of the LS solution. As well as 
showing/~1,/~2 and ~ for each iteration, we tabulate/~(0, p), where 3) is the final 
computed solution. Here are our comments on the results. 

. Iterative refinement converged in these and most other examples, although 
not always after one iteration. An example where it failed to converge is Prob- 
lemV with w =  1014 and 0 = 0  (after ten iterations //(~,~)> 10-2); how- 
ever, if in this problem we interchange the large rows of A to the top (cf. point 
4 below) then fl(f, 2) = 1.04 x 10 -15, and after one step of iterative refinement 
N~,~9) = 5.98 x 10 -17. 

2. As we would expect, the modified definition of f12 was invoked for most of the 
small residual problems, as indicated by the set 5e being nonempty. 

. In several instances where p(x) ~ u,/~(0, p) -/~(~, p). Also,/~(0, p) </~(g, p) in Table 
4.2 for 0 = 0. Since/~(0, ~) is trivial to compute it seems advisable to evaluate it 
whenever p(x) = O(u) and to consider using it in forward error bounds. 

. The coefficient matrix A can have widely differing row norms in weighted LS 
problems and in LS problems produced by the method of weighting for linearly 
constrained LS problems [15, secs. 5.6.2, 12.1.5], [34]. It is well-known that in 
such circumstances the solution computed by Householder QR factorization can 
be unstable in the sense of having a large componentwise backward error [28], 
[24, Ch. 17]. This is confirmed in Tables 4.1, 4.3 and 4.4, where the/~1 values are 
large for the first iteration. The usual advice is to avoid this instability by 
incorporating "partial pivoting style" row interchanges, as suggested in [28]. 
Our results suggest that an alternative that may be worth considering is to use 
iterative refinement to stabilize the solution (or indeed one could use both 
techniques together). In sparse problems a possible advantage ofiterative refine- 
ment is that it allows the row ordering to be chosen to minimize intermediate 
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fill-in rather than to preserve stability (the sparsity of the R factor depends on the 
column ordering but not the row ordering). We note, however, that to implement 
iterative refinement it is necessary to store and re-use the orthogonal factor Q, 
which may be undesirable. The method of semi-normal equations [7] avoids the 
use of Q but has different stability properties. In the tables below P6 stands for 
{1,2,3,4,5,6}. 

Table  4.1. P r o b l e m  PR. 

cond(A)=3.46e~xz(A)=8.32e5 
cond(C) = 9.23e5, K2(C) = 1.73e6 
p(x) ~(0,~) ~ ~ 

2.40e-7 1.30e-1 3.55e-11 2.06e-10 0 
5.74e-17 3.70e-18 0 

Table  4.2. P r o b l e m  V. w = 1. 

cond(A) = 2.56e3, x2(AJ = 2.22e3 
cond(C) = 3.36e6, K'2(C ) = 2.66e6 
o p(x) 8(0, S,) ~ 132 

0 1.53e-16 7.39e-17 4.97e-15 1.t6e-32 P6 
8.00e-17 7.88e-33 1°6 

10 -9 6.76e-13 2.41e-i1 5.18e-15 5.23e-29 1°6 
7.87e-17 4.03e-30 P6 

I 6.76e-4 2.36e-2 4.70e-15 6.01e-16 0 
8.47e-17 1.21e-17 0 

103 6.76e-1 1 .0e0  6.10e-16 5.84e-16 0 
7,62e-17 1.74e-17 0 

Table  4.3. P r o b l e m  V. w = 10 5. 

cond (A) = 2.69e3, K2(A ) = 9.95e7 
cond(C) = 5.03e10, K2(C) = 7.99e10 
o p(x) ~(o, 5,) ~ ~2 

0 2.03e-16 2.62e-16 9.24e-ll 4.22e-28 /'6 
t.I0e-16 4.22e-28 P6 

0 .9 2.12e-16 2.41e-tl 9.24e-ll 4.60e-28 P6 
9.29e-17 4.22e-28 P6 

1 1.17e-8 2.36e-2 9.14e-ll 1.60e-I1 0 
1Ale-t6 2.12e-17 0 

103 1.17e-5 1.00e-0 7.81e-12 1.60e-ll 1~ 
8.14e-17 9.94e-18 0 

Table  4.4. P rob l e m V. w = 10 l°. 

cond (A) = 2.69e3, ~:2(A) = 9.95e12 
cond (C) = 5.03e15, ~c2(C ) = 7.99e15 
0 p(x) fl(o, ~) fl~ ~ 

0 3.09e-17 2.62e-16 1.74e-5 
9.76e-12 
7.20e-15 
7.44e-17 

10 -9 3.43e-17 2.41e-ll 1.74e-5 
9.76e-12 
7.25e-15 
1.04e-16 

1 1.17e-13 2.36e-2 1.70e-5 
2.84e-ll 
7.75e-15 
9.84e-17 

103 1.17el0 1.00e0 7.45e-7 
1.60e-9 
7.21e-14 
7.65e-17 

9.86e-23 P6 
.9.86e-23 P6 
3A0e-28 P6 
1.80e-32 P6 

9.86e-23 P6 
9.86e-23 P6 
3.10e-28 P6 
1.99e-32 P6 

1.49e-19 P6 
9.86e-23 P6 
Z60e-28 P6 
4.36e-30 /'6 

2.87e-6 0 
1.55e-ll 0 
1.02e-15 0 
1.06e-17 0 

Table  4.5. P rob l e m H. 

cond (A) = 4.16e6, x2(A) = 4.70e6 
cond (C) = 5.77e6, x2(C) = 8.89e6 

132 

0 2.02e-17 1.78e-15 3.13e-14 
4.22e-17 
6.14e-17 
2.60e-17 
1.88e-17 

10 -9 7.92e-13 8.66e-10 3.12e-14 
4.01e-17 

1 7.92e-4 4.64e-1 1.66e-14 
1.25e-t7 

103 7.92e-1 9.99e-1 2.28e-16 
0.00e0 

2.26e-16 ~i 
3.22e-15 0 
2.23e-16 0 
3.36e-16 0 
5.66e-17 0 

2.35e-16 0 
2.45e-17 ~i 

2.03e-16 0 
1.46e-17 0 

2.56e-16 t~ 
4.05e-17 0 
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Our overall conclusion is that iterative refinement provides an effective way to 
enhance the stability of Householder and Givens QR factorization algorithms for 
solving the LS problem. Our analysis and experiments put the refinement process on 
a sound footing, although we have not derived conditions under which it is guaran- 
teed to succeed. LAPACK includes iterative refinement in its routines for Gaussian 
elimination [3,4]. We suggest it is worth considering supporting iterative refinement 
for LS problems as well. 
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Appendix. 

A Error analysis results. 

In this appendix we state componentwise error analysis results for the solution of 
linear systems and least squares problems via the QR factorization. The proofs of 
these results are given in [20]. 

Recall that our model for floating point arithmetic is (2.4). The constants used in 
the results are defined as follows: 7. = nu/(1 - nu); #m,. = ~am+b.+c for some small 
integer constants a, b, c; and 

21~m,. 4 m ( n  - 1) 
0,... = 1 -- 2#, . , .~/m(n -- 1)" 

The results are stated for Householder QR factorization, but they remain valid (with 
slightly different constant terms) when the QR factorization is computed using 
Givens rotations. 

LEMMA A. 1 Let  A ~ [R" ×" be nonsingular. Suppose we solve the system A x  = b with 

the aid of  a QR factorization computed by the Householder algorithm. The computed 
2c satisfies 

where 

with 

(A + F)fc = b + e, 

IFI ~ I*...G[AI, [el ~ I~.,inlbl, 

tlafh ~ 3n2(1 + 0.,.), tlHIt2 ~ 2n(l + 0.,1). 

The next result concerns the solution of the augmented system for a least squares 
problem, which we take in the form 
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(A. 1) r + Ax = f, 
Arr = g. 

If A has the QR factorization 

where R1 ~ ~" ×", then (A. 1) transforms to 

[R~ O] Qrr = g. 

This system can be solved as follows: 

h = R[Tg,  

F d, 
d = Qr f  = kd2J 

x = R ; t ( d l  - h). 

LEMMA A.2 Let A e Nm ×, be offull rank n <_ m and suppose the augmented system 
( A.1) is solved using a QR factorization of A as described above. The computed 2 and 
i satisfy 

[ I A + E l l  I ~ l = [ f g + e l  ~ 
(A + E2) r 0 + e2J' 

where 

with 

[Ell < #,,,n GIA[, i = t :2, 

lell - #r,,l(nlifl +/-/210, 

le21 < #,,alzrln31~l, 

IIGl]2 ~ 3mn(1 + Om,n) , 

[IHI[12 ~ 3m3/2( 1 + 0,,,1), 

HH2[I2 < 5m3/2(1 + Ore,l), 

IIH3112 --- 7m3/2 #ma(1 + 0re,l). 
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