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Abstract.

Iterative refinement is a well-known technique for improving the quality of an approximate solution to
a linear system. In the traditional usage residuals are computed in extended precision, but more recent
work has shown that fixed precision is sufficient to yield benefits for stability. We extend existing results to
show that fixed precision iterative refinement renders an arbitrary linear equations solver backward
stable in a strong, componentwise sense, under suitable assumptions. Two particular applications
involving the QR factorization are discussed in detail: solution of square linear systems and solution of
Jeast squares problems. In the former case we show that one step of iterative refinement suffices to
produce a small componentwise relative backward error. Our results are weaker for the least squares
problem, but again we find that iterative refinement improves a componentwise measure of backward
stability. In particular, iterative refinement mitigates the effect of poor row scaling of the coefficient
matrix, and so provides an alternative to the use of row interchanges in the Householder QR factoriz-
ation. A further application of the results is described to fast methods for solving Vandermonde-
like systems.
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1. Intreduction.
Iterative refinement is an established technique for improving a computed sol-
ution X to a linear system Ax = b. The process consists of three steps:
1. Computer = b — AX.
2. Solve Ad =r.
3. Update y =% + d.

(Repeat from step 1 if necessary, with £ replaced by y).
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Traditionally, the method is used with Gaussian elimination, and r is computed in
extended precision before being rounded to working precision. Iterative refinement
for Gaussian elimination was used in the 1940s on desk calculators, but the first
thorough analysis of the method was given by Wilkinson in 1963 [35]. The
behaviour of mixed precision iterative refinement is now well understood (see
[15,25, 32] for example): if double precision is used in the computation of r, and 4 is
not too ill-conditioned, then the iteration produces a solution correct to working
precision, and the rate of convergence depends on the condition number of A.

In the last ten years or so an alternative usage of iterative refinement has gained
popularity, in which the residual is computed in the working precision. This interest
in fixed precision iterative refinement was prompted by two papers that appeared in
the late 1970s. Jankowski and Wozniakowski [23] proved that an arbitrary linear
equation solver is made backward stable by the use of fixed precision iterative
refinement, as long as the solver is not too unstable to begin with and A is not too
ill-conditioned. Skeel [30] proved that Gaussian e¢limination with partial pivoting
becomes stable in a much stronger sense than usual after just one step of fixed
precision iterative refinement, again under suitable assumptions.

The purpose of this work is to show that an arbitrary linear equation solver can be
made stable in the strong, componentwise sense considered by Skeel with the use of
fixed precision iterative refinement, as long as certain mild conditions are satisfied.
In a sense this result combines the best features of the results of Jankowski and
Wozniakowski and of Skeel. The result has three particularly interesting implica-
tions:

1. QR factorization with iterative refinement for solving Ax = b matches the stabil-
ity of Gaussian elimination with partial pivoting and iterative refinement.

2. QR factorization with iterative refinement for solving least squares problems
yields a small componentwise backward error, asymptotically, and consequently
the overall method is insensitive to poor row scaling of the coefficient matrix.

3. The fast methods for solving Vandermonde-like systems of [11,13,17, 18] are
numerically stable when coupled with iterative refinement. This had previously
been observed empirically, but theoretical explanations were lacking.

The outline of this paper is as follows. In section 2 we develop results for fixed
precision iterative refinement with an arbitrary linear equation solver. For the
particular case of Gaussian elimination we compare our results with those of Skeel.
We also discuss the application of our results to fast algorithms for solving Vander-
monde-like systems. In section 3 the results of section 2 are applied to the method of
OR factorization for solving linear systems. Numerical experiments are reported to
illustrate the theory.

The least squares problem is considered in section 4. We analyze iterative
refinement applied to the augmented equations in conjunction with a QR factoriz-
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ation. We obtain an asymptotic result which shows that iterative refinement leads to
a small componentwise backward error. Again, numerical experiments are in-
cluded.

The work in sections 3 and 4 makes use of a componentwise error analysis for the
Householder and Givens QR factorization algorithms. Since traditional error
analyses for these algorithms involve normwise bounds we had to develop a new
componentwise analysis. The resuits of the analysis are stated in an appendix, and
the proofs may be found in [20].

For an excellent, up to date survey of both fixed and mixed precision iterative
refinement and their applications see [9].

We stress that in this work we concentrate exclusively on fixed precision iterative
refinement, and we will often refer to it simply as “iterative refinement”,

2. Main result,

To assess the stability of linear equation solvers with iterative refinement we will
use the notion of componentwise relative backward error. The componentwise rela-
tive backward error for an approximate solution y to Ax = b, where A e R**", is the
quantity

2.1) o(y)=min{e:(d + A4)y =b + 4b, |4A| < e|Al, |4b| < lb|},

where matrix absolute values and inequalities are interpreted componentwise. Thus
w is the size of the smallest perturbation we have to make to 4 and b for y to be an
exact solution of the perturbed system, where each individual perturbation is
measured relative to the element that it perturbs. Note that o can be much larger
than the normwise relative backward error

(22) n(y)=min{e:(A+ 44y = b+ 4b, |4A| <e|A|, [4b| <e|b]}.

In fact, @ may be infinite, in which case no perturbations of the specified structure
exist.

When working in floating point arithmetic with unit roundoff u the best that we
can hope for is w ~ u. The question we are interested in is whether iterative
refinement helps to achieve this goal. A result of Oettli and Prager [26] provides the
convenient expression

b — Ayl;
2.3) ofy) = max———"—,
)= AL + o,
where {/0is interpreted as zero if { = 0 and infinity otherwise. Thus the approach we

take in our analysis is to attempt to bound |b — Ay| by a scalar multiple of
|4llyl + |b|.
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We will use the following model of floating point arithmetic, which allows for
possible lack of a guard digit in addition and subtraction:

flxopy)=(xopy)ll +9), 6| <u op=x)/
2.4 AxEy=x1+a) £y +p), lhifl<u
ASX) = /x1+8), Bl<u

Computed gquantities are denoted with a hat.

To make our analysis as widely applicable as possible we make only very general
assumptions about the linear equation solver and the method for computing the
residual. We assume that the computed solution £ to Ax = b satisfies

(2.5) b — A%} < u(g(4, b)%| + KA, D))

where g: R"*@*Y 5 R"*" and h: R**®*Y - R" have nonnegative entries. The
functions ¢ and h may depend on n and u as well as on the data 4 and b. We also
assume that the residual r = b — A% is computed in such a way that

(2.6 F—r < ut(A,b,%),

where - R**®*2 _, R" js nonnegative. It is straightforward to show that if r is
computed in the conventional way, in the working precision via inner products or
saxpy operations, then we can take

) 14,5,%) = T A + b))
where y, = ku/{1 — ku).

THeOREM 2.1. Let AeR"*" be nonsingular. Suppose the linear system Ax = b is
solved in floating point arithmetic using a solver S together with one step of iterative
refinement. Assume that the computed solution X produced by S satisfies (2.5) and that
the computed residual 7 satisfies (2.6). Then the corrected solution § satisfies

(2.8) b — AP| < u(h(A,7) + (A, b, ) + |AlIJ]) + ug,
where g = O(u) if {A,b,%) — t(4,b,7) = O(|X — Ji2)-

PROOE. The residual » = b — A% of the original computed solution X satisfies
(2.9) rl < w(g(A, b)I%| + W4, D).

The computed residual is 7 .= r + Ar, where |4r| < ut(4, b, %). The computed correc-
tion d satisfies

(2.10) Ad=F+ fi,  |fil < ulg(4, Pld| + h(A4,7).
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Finally, for the corrected solution we have
(2.11) J=AG+ =% +d+ fo,  1fol < ul(f] + ).
Collecting together the above results we obtain
b— Ay = b — A% — Ad — Af,
=i — Ar — Ad — Af,
= —f, — dr — Af,.
Hence
(2.12) b — AP| < w(g(A, Ald] + WA, 7)) + ut(A, b, %) + ul4|(%|+|d])
= u(l(A,7) + t(4,b,9) + |47 + ug,
where
q=UA,b,%) — UA,b,7) + g(A,P)d| + AN — 5] + |d]).

The claim about the order of ¢ follows since £ — §, |£| — |§| and d are all of
order u. n

Theorem 2.1 shows that, to first order, the componentwise relative backward
error  will be small after one step of iterative refinement as long as h(4,#) and
t(A, b, §) are bounded by amodest scalar multiple of |4]|§| + |b]. This is true for ¢ if the
residual is computed in the conventional way (see (2.7)), and in some cases we may
take h = 0, as shown below. Note that the function g of (2.5) does not appear in the
first order term of (2.8). This is the essential reason why iterative refinement works:
potential instability manifested in g is suppressed by the refinement stage.

A weakness of Theorem 2.1 is that the bound (2.8) is asymptotic. Since a strict
bound for g is not given it is difficult to draw firm conclusions about the size of w.
The next result overcomes this drawback, at the cost of some specialization (and
a rather long proof).

We introduce the condition number of Skeel [29]

(2.13) cond(B) = [[|1B™| |Bl||,
and the measure of ill-scaling of the vector |B| |x]|

max; (|B] |x|);
6B, x) = —————
min; (|B] |x]);
THEOREM 2.2. Under the conditions of Theorem 2.1, suppose that g(A, b) = GlA4|
and h(A,b) = H|b|, where G, H € R"*" have nonnegative entries, and that the res:dual is
computed in the conventional manner. Then there is a function

S, 62) = (2t + n + Djcond (A1) + 2ty + n + 22(1 + ut,))/(n + 1)
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such that if

cond (4™ o(4, §) < (f(IGllos 1Hll o)) ™!
then

b — AJ| < 2yue Al 1.
ProoOF. From (2.12) in the proof of Theorem 2.1, using the formula (2.7) for ¢, we

have
(2.14) b — AP < uHIF + ns 1Bl + Gusy + wlA] 12+ ul + G| 1d].
The inequality (2.9) implies

bl — 14| 2] b — A% < w(GlA] %] + H|b]),

or(I — uH)b| < (I + uG)A| |%.Ifu||H| , < 3(say)then] — uH is nonsingular with
a nonnegative inverse satisfying [|(I —uH) '|, <2 and we can solve for |b| to
obtain |b| < (I — uH)" (I + uG)|4] |%|. It follows from this relation and consider-
atien of the rest of the proof that the simplifying step of replacing b by 0 in the
analysis has little effect on the bounds — it merely produces unimportant perturba-
tions in f in the statement of the theorem. Making this replacement in (2.14), and
approximating y,+; + 4 =y, we have

(2.15) b — AP| < uHF| + yu41]4] 1% + u(d + G)|A] |d|.

Our task is now to bound |4| ||, [#| and |A] |d] in terms of |§|. By manipulating
(2.11) we obtain the inequality

(2.16) Il < (1= w) (9 + (1 + wid) = 15] + ldl.
Also, we can bound |#| by
Fl < |rl + 14 < w(GlA] 2] + HIb) + 75+1(4] 1% + 1D,
and dropping the |b| terms and using (2.16) gives
(2.17) # < (UG + ypr 1 DAL 12] < UG + 01 DIAIIF] + 1)),
Substituting from (2.16) and (2.17) into (2.15) we find
b — Al < uH@G + yr (DA + 1) + 701 114KI51 + 1d) + I + G)lA] |d]
= Y+ 1] + UHWUG + yo+ 1 D)IA] 19
+@nst] + ul + G) + uHUG + 7,4 D)IA] |d]
(2.18) = (v 1]+ Mo)IA 5] + Mal4] |d,
where
IMillo < ul Hlo@liGllo + Vu+1)s
Mzl < 7ns2 + |Gl + ul Hll ol Gl oo + Yns1):
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Now from (2.10), making use of (2.17),
|l =147'¢ + fi)l

< A7 + uGl|A| | + uH|F)

< AT + uH)MG + pos DA + 1d]) + uGlA] 1d).
After pre-multiplying by |A4| this may be re-arranged as
(2.19) (I — uM3)lA| |d] < ulA] |47 M,lA] 7,
where

M = |A] |A7'{ + uH)(G + (7ns1/w)]) + G),
My = (I + uB)(G + (1 /1)

Using y,+1/u <(n + D1 — {2 + 1)u) ~ n + 1, we have the bounds

IMs]lo < cond (A7 )G o + 1 + D2 + u|Hll),

IMalleo < (IGllw + 1+ (1 + ulHll)-

Ifu|Ms||,, < 1/2(say) then (I — uM;)~* > Owith | (I — uM;)"!||,, < 2 and we can
rewrite (2.19) as '

(2.20) Al |dl < (I — uMs)™"4] |47 M,|A] I3,
Substituting this bound into (2.18) we otain
2.21) b — AP < Gasad + My + uM,(I — uMs) " A| 1A ML) A (7]
= (Ya+ 1 + Ms)lA] 7]
< ol4] I3},
where O = Yps1 + [ Msl, (4, ).
Finally, we bound | M|l . Writing g = ||G|| o, h = ||H| ., we have
M5l < uPgh + uhy, sy + 2u(y, 42 + ug + ugh + uhy, )"
~cond (A7) (g + n + D)(1 + uh)
and this expression is approximately bounded by
Wh(g +n+ 1)+ 2(g +n+ 2> (1 + uh)® cond (4 1).

Requiring || M), o(4, §) not to exceed 7y, ; leads to the result. u
Theorem 2.2 says that as long as A is not too ill-conditioned and | 4] |§| is not too
badly scaled (cond (4 ~!)a(4, ) is not too large) and the solver S is not too unstable
(f(IGllw, |H|l ) is not too large) then w < 2y, ; after one step of iterative refine-
ment. Note that the term y,4,(4| [§| in (2.21) comes from the error bound for
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evaluation of the residual, so this bound for w is about the smallest we could expect
to prove.

It is instructive to apply Theorem 2.2 to Gaussian ¢limination and to make
a comparison with results of Skeel. Suppose, then, that the solver S is Gaussian
elimination with or without pivoting, and in the latter case assume (witholut loss of
generality) that no interchanges are required. Standard error analysis results {see,
e.g., [22]) show that in (2.5) we can take

g(Av b) = cnli‘[ 'Ula h(A: b) =0,

where L, U are the computed LU factors of 4 and ¢, ~ n. To apply Theorem 2.2 we
use A ~ LU and write

glA,b) = ¢, |L| IL Al < clLf IL7Y 1Al

which shows that we can take G =c,l| |IL7' and f(IGllo, [H|) =~
2null|L] |L1(|%. Without pivoting the growth factor-type term [||L] 1L ™|l is
unbounded, but with partial pivoting it cannot exceed 2" and is typically O(n) 33].

We can conclude that for Gaussian elimination with partial pivoting one step of
iterative refinement will usually be enough to yield a small componentwise relative
backward error as long as 4 is not too ill-conditioned and |4| [§| is not too badly
scaled. Without pivoting the same holds true with the added proviso that the
computation of the original £ must not be “too unstable”. Some numerical experi-
ments are reported in the next section.

Note that for some special classes of matrix the componentwise relative backward
error is guaranteed to be small for the original £ produced by Gaussian elimination
without pivoting; see [22] for details and references. In such cases there is no benefit
in doing iterative refinement in fixed precision.

These results for Gaussian elimination are very similar to those of Skeel [30]. The
main differences are that Skeel’s analysis covers an arbitrary number of refinement
steps with residuals computed in single or double precision, his analysis is specific to
Gaussian elimination, and his results involve a(4, x) rather than a(4, y). Our state-
ments and proofs of Theorems 2.1 and 2.2 were strongly influenced by the work in
[30].

A second application of our results is to methods given in [13, 11, 17, 18] for
solving n x n Vandermonde systems in O(n”) operations. It is known that some of
these methods can be unstable, but practical experience indicates that iterative
refinement usually cures the instability [17, 18]. An error analysis covering all the
algorithms is given in [18, Theorem 3.2] and it shows that a result of the form (2.5)
holds (with & = 0). Hence Theorem 2.1 is applicable. (Theorem 2.2 is not directly
applicable because g(A4, b) is not of the form G{4|.)

When solving Vandermonde systems the coefficient matrix is usually not avail-
able, so residuals are computed using some form of nested multiplication. In the case
of (confluent) Vandermonde matrices based on the monomials, the residuals are
formed using Horner’s rule, and it is straightforward to show that (2.7) holds {error
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analysis of Horner’s ruleis given in [ 35, pp. 36-37], for example). Hence for standard
Vandermonde matrices Theorem 2.1 leads to an asymptotic componentwise stabil-
ity result. For (confluent) Vandermonde-like matrices based on orthogonal poly-
nomials the residuals are computed using an extension of the Clenshaw recurrence
[18,31]. A complete error analysis of this recurrence is not available but it is easy to
see that (2.7) will not always hold. Nevertheless it is clear that a normwise bound can
be obtained {see [27] for the special case of the Chebyshev polynomials) and hence
an asymptotic normwise stability result can be deduced from Theorem 2.1. Thus our
results provide theoretical backing for the use of iterative refinement with fast
solvers for Vandermonde systems.

3. OR factorization for linear systems.

In this section we consider the use of fixed precision iterative refinement with QR
factorization methods for solving Ax = b, where A € R"*". Specifically, we suppose
that a QR factorization A = QR is computed using Householder or Givens trans-
formations and x is obtained by solving Rx = Q7b.

Since we are interested in the componentwise relative backward error we need
a componentwise backward error result for QR factorization solution of Ax = b.
The standard result is expressed in terms of norms: from Wilkinson’s analysis of
Householder or Givens QR factorization and back substitution [36, pp. 236, 240,
247] it follows that the computed £ satisfies

Gl (A+A44)%=b+4b, |44, < pul Al  14bl; < p(r)ulbl,,

where p(n) is a linear polynomial. This result shows that the normwise relative
backward error #{%) is small.

We have carried out a detailed componentwise error analysis, the result of which
is presented in the appendix. Lemma A.1 shows that £ satisfies

(3.2) ib — A%| < u(G|A| |z + HIb]),

where |G|, and |H|, are both bounded by a low degree polynomial in n. The
matrices G and H have no special structure, and so (3.2) suggests that the com-
ponentwise relative backward error need not be small when x is computed via a QR
factorization. In fact, we know of no class of 4 for which Householder or Givens OR
factorization is guaranteed to yield a small componentwise relative backward error.

Suppose, then, that we carry out a step of iterative refinement, to obtain §. By the
form of the bound (3.2) we can invoke Theorem 2.2. We conclude that the com-
ponentwise relative backward error ($) will be small as long as A is not too
ill-conditioned and || |§] is not too badly scaled. This is, of course, precisely the
same conclusion as for Gaussian elimination with partial pivoting (GEPP).

This conclusion is interesting because it sheds further light on the comparison
between the competing methods of QR factorization and GEPP for solving linear
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systems. The accepted reasoning is that GEPP is faster but QR factorization has
guaranteed stability (in the sense of normwise backward error). We have shown that
QR factorization matches GEPP in the ability to produce a small componentwise
relative backward error when combined with iterative refinement. Concerning
speed, Golub and Van Loan [15, p. 257} comment

The flop counts tend to exaggerate the Gaussian elimination advan-
tage. When memory traffic and vectorization overheads are considered,
the QR approach is comparable in efficiency.

The two methods for solving Ax = b therefore seem to be quite closely matched —
for general, dense matrices, at least.

We have carried out numerical experiments in MATLAB to investigate the
practical performance of iterative refinement. We used Householder QR factoriza-
tion and Gaussian elimination both with and without partial pivoting. For each
method we computed for each iterate z the componentwise relative backward error
w(z) using (2.3) and took “w(z) < u” as the termination criterion. In our MATLAB
computing environment u = 272 ~ 2.22 x 107'°. Some selected results are pres-
ented in Tables 3.1-3.7. In the columns of the tables are reported the © values for
cach method. “Fail” in the GE column denotes that Gaussian elimination broke
down with a zero pivot. Also reported are the standard condition number x (4) =
lAlloll4~ |l o, the condition number appropriate to componentwise perturbations
in the data, cond(4) = [||4™ Y] |Al]|, of (2.13) (which is no larger than x,(4)), and
6(4, x) = cond (4~ ")a(A4, x), which is the quantity that certainly must not exceed u~ !
if we are to be able to conclude from Theorem 2.2 that one step of iterative
refinement suffices for these methods.

The matrices referred to in the tables are from the test collection [19]. Briefly,
element(n) is tridiagonal with zero diagonal entries, invhilb(n) is the inverse of the
Hilbert matrix, pascal(n) is a positive definite matrix made up from the entries of
Pascal’s triangle, compan(n) is a companion matrix, orthog(n) is a symmetric and
orthogonal matrix, and gfpp(n) is a matrix for which the growth factor for GEPP is
maximal. In each case the right-hand side b was chosen as a random vector with
elements between 0 and 1.

The results show several noteworthy features.

GEPP performs as predicted by our analysis and by Skeel’s analysis. In fact,
jterative refinement converges in one step even when 6(4, x) > u ™" in the examples
reported and in most others we have tried. GE also achieves a small componentwise
relative backward error, but can require more than one refinement step, even when
B(A4, x) is small.

OR factorization with iterative refinement performs as predicted by our analysis.
In most of the examples we tried where 8(4, x) > u~ ' the refinement still converged
but took two iterations.
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Over the whole body of tests it was noticeable that the componentwise relative
backward error for the original @R solution was usually larger than that for the
original GEPP solution, by a factor typically between 2 and 10 (for n < 50).
A consequence is that the refinement step was needed more often for the QR method
than for GEPP.

It is worth stressing that the QR factorization yielded a small normwise relative
backward error in every case ((X) < u,in fact), asit must, in view of (3.1). For GEPP,
7(%) &~ 3 x 10" *for A4 = gipp (50), but #(%) < u in the other cases reported.

We note that Arioli, Demmel and Duff [2] have shown how to sidestep difficulties
with iterative refinement of Gaussian elimination caused by a large value of (4, x)
(asislikely to arise when A and x are sparse). Their approach is to relax the definition
of componentwise relative backward error as follows: if

(Al Iyl + 1b]); < 1000nu (A, ) o Iyllw + 1B,

then the inequality |4b|; < ¢lb,] in (2.1) is relaxed to |4b; < e}l A(i, )| |l y]] , which
amounts to replacing [b;] in the denominator of (2.3) by | A(, )| 1|V «- (Here, AG,:)
denotes the ith row of A.) See [1] for more details. Although this strategy was
developed with Gaussian elimination in mind it applies equally well to the QR
factorization.

Finally, we mention row equilibration. Here, we solve the scaled system
(DA)x = Db by GEPP or QR factorization, where B = DA has rows of unit 1-norm.
This approach avoids the effects of poor row scaling, and we have x ,(B) = cond (A).
However, as explained in detail in [14], there is no guarantee that row equilibration
will lead to a small componentwise relative backward error, and so row equilibra-
tion is a less powerful tool than iterative refinement.

Table 3.1. w values for A = clement (10)

(A, x} = 3.85¢6
cond (4) = 9.80¢0, Ko(A) = 4.18¢1

Table 3.2. w values for A = invhilb (10)

GEPP GE QR
1.91e-13  Fail 2.37e-12
2.52e-17 9.98¢-17

6(4, x) = 3.99¢18
cond(A) = 592e12, K. (A) = 3.54¢13

Table 3.3.  values for A = pascal (10)

GEPP GE QR

1.02e-16 1.25e-17 1.98¢-11
1.73e-15
4.96e-17

(4, x) = 2.74¢12
cond (4) = 5.02¢8, Kol(Ad) = 8.13¢9

Tabel 3.4. w values for 4 = compan (25)

GEPP GE QR
2.70e-15  6.77¢-18 8.73¢-14
3.88¢-17 6.92¢-18

04, x) = 1.36¢6
cond(d) =295el,  x,(4) = 4.37¢3
GEPP  GE QR

2.08e-14  2.08e-14 6.43e-15
1.98e-17 1.98e-17 1.98e-17
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Table 3.5. w values for A4 = orthog (25) Tabel 3.6. w values for A = clement (50)
84, x) = 3.02¢1 B(A, x} = 2.40¢18
cond (4) = 2.09¢1, Ke(A) = 2.10el cond (4) = 1.44¢6, Ko(A) = 3.50¢7
GEPP GE QR GEPP GE QR
2.53e-16  4.61e-07 4.54e-16 31.88¢-15 Fail 1.43e-07
4.59e-17  1.56e-13 5.31e-17 7.74e-17 1.04e-15
4.34e-17 6.71e-17

Table 3.7. w values for 4 = gfpp (50)

84, x) = 4.51e2

cond (4) = 50, Ko(A) = 50
GEPP GE QR
8.03¢-04  8.03e-04 3.22¢-16
8.06e-17  8.06e-17 3.82e-17

4. Least squares by QR factorization.

Let Ae R ™" be of full rank n < mand let b e R™. If x solves the least squares (LS)
problem min, ||4Ax — b}, then

(4.1) U ﬂ [l] B m

since this augmented system of dimension m + n is a representation of the normal
equations A Ax = A"b. Itis well-known that an approximate LS solution % can be
improved by applying iterative refinement to the augmented system [5, 6, 12], but it
is usually assumed that double precision is used when calculating the residuals.

In some recent work the use of single precision iterative refinement on the
augmented system has been considered. Bjorck [8] states without proof that
iterative refinement yields benefits for a certain componentwise measure of stability
(namely B in (4.6) below) when the solution method is based on a QR factorization of
A. Arioli, Duff and de Rijk [2] make a thorough study of iterative refinement for the
case. where A is sparse and the solution method is Gaussian elimination with
symmetric pivoting applied to the whole augmented system. They draw on Skeel’s
analysis of iterative refinement for Gaussian elimination. We also mention in
passing that Bjoérck [7] analyses fixed precision iterative refinement applied to the
so-called “semi-normal equations” for the LS problem.

In this section we analyze fixed precision iterative refinement for the augmented
system with Householder or Givens QR factorization as the method of solution. The
outline is as follows. First we provide some theoretical support for this application
of iterative refinement, by using componentwise error analysis together with The-
orem 2.1 to obtain a bound for the residual of the augmented system after one step of
refinement. Based on this bound we identify an appropriate definition of backward
error, and show this backward error to be small, asymptotically. We observe that in
small residual problems it can be difficult to achieve a small backward error, and we
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suggest practical ways to overcome this difficulty. Finally, we describe some numeri-
cal experiments.

To begin, we recall the well-known result that the Householder and Givens QR
factorization algorithms provide a stable way to solve the LS problem in the sense of
normwise backward error (see [24]). There is no reason to expect any component-
wise measure of backward error to be small, but Theorem 2.1 suggests that iterative
refinement applied to the augmented system may help to achieve this goal.

The analysis of iterative refinement is more difficult for the LS problem than it is
for a general square linear system. This is largely due to the following three reasons,
to which we will return later in the section.

1. No explicit formula is known for any backward error of a general approximate
LS solution y (see [21] for a detailed discussion).

2. Aperturbation in 4 results in a special, symmetric perturbation of the coefficient
matrix in (4.1).

3. If weareinterested only in x, then r in (4.1) can be regarded as an arbitrary vector
parameter that can be chosen to minimize the backward error.

In the appendix we give the result of a detailed componentwise error analysis for
the solution of the system

“.2) [;T }ﬂ [l] B m

via a Householder or Givens QR factorization of 4. We allow g # 0in (4.2) (cf. 4.1))
so that the analysis is applicable to the refinement step as well as to the initial
solution phase. Lemma A.2 implies that the computed solution (*, £7)7 to (4.2)
satisfies

.

m _[ I A] [ ] - [um,nG;At %] + thm, 1(H |1 + Holf))
g AT 01 %] 7L HmalATIGTIA + p, 1 |ATIHs|F|

H, Gl 7 H, 0] [lf]
=k '"’"(LATIG' 0 ] [IJ‘CJ +[0 OJ [IQID’

where G = G” + Hj, p,, , is approximately the product of the unit roundoff u with
a linear polynomial in m and n, and all these G and H matrices are bounded in norm
by low degree polynomials in m and n. If we express this bound in the form of (2.5)

then
(] L) Hm,n HZ GIA,
A, b)Y = 2 -
9(A, b) " [iAT]G 0}

« ,,_M Hl 0 ‘f‘
=53] L)
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where the A and b inside the quotes denote the matrix and right-hand side of the
linear system (4.2) and not the data of the LS problem. To apply Theorem 2.2 we
would need to express “g(4, b) = G|A4|”, that is,

M[Hz Gl _ s £ 14
u 147G o |~ L4T o]

Unfortunately, this cannot be done in any useful way.

Since Theorem 2.2 is not applicable, we turn to Theorem 2.1, which tells us that
the corrected solution (57, $7)T obtained after one step of iterative refinement
satisfies (with terms re-ordered from (2.8))

[f) _[I A] [:1 < H, O 174 I 14] 13
o] 7lar o] [sll=* o of L) T LA o | Lt
1A s Tl .
¥ V”‘*”‘“‘(LM 0} M ¥ [OD + o)

Here, (#1,7%)" denotes the residual of the augmented system corresponding to the
original computed solution, and we are assuming this residual is computed in the
usual way, so that (2.7) holds. We will make two simplifications to the bound (4.3).
First, since (T, #2)T = O(u) the first term in the bound may be included in the O(u?)
term. Second, (4.3) yields |b — § — A$| = O(u)and so 5| < |4| || + Ib| + O(u). With
these two simplifications, together with yp, 4n+1 + 4 < Pp+n+2,(4.3) may be written

o)=L 1 (s S0 [0]) o

To interpret this inequality in backward error terms we consider a perturbed
augmented system

I A+ A4 [F] b+ 4b
@) [(A+AA2>T 0 ][x]”[ 0 }

and we define

(4.6)  B(7, %) = min {e:(4.5) holds with [44,| < eldl, i = 1:2, |4b] < &lb|}.

@.3)

(4.4)

By appealing to the most general form of the Oettli-Prager result (in which |4 and |b}
in(2.1)and (2.3) are replaced by arbitrary E > Oand f > 0) we obtain the expression

HEERIM
. o] [4" of[=];
47 e =me (PEIBEA)

|47 0§ | 01/

{ b — (F + AX)); |47 }
= max .

A 1w+ BT (AT (A
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From (4.4) it follows that if the O(u?) terms can be neglected then B3, §) < 2V 4n+2-

The backward error B(7, ) was introduced by Bjorck [§]. Strictly, it should be
called a pseudo componentwise backward error because it allows the two occurren-
ces of 4 in the augmented system to undergo different perturbations and this does
not correspond in any simple way to perturbing the original data of the LS problem.
(It is shown in [16] how to compute the genuine componentwise backward error

that results when A4, = 44, is forced in (4.6).)

Two important properties of § are as follows (see [21], [10] or {2] for further
details):

1. If the rows or columns of A are scaled then the class of perturbations A4;, 4b in
the definition of § scales in the same way. Hence f is invariant under row and
column scalings of A.

2. A bound for the forward error ||x — 7|, can be obtained in terms of . This
bound is potentially much smaller than the standard forward error bound for the
LS problem involving x,(A) (partly because of its better scaling properties).
Moreover, it is identical to the bound that would be obtained if the perturbations
AA, and 44, were equal —in other words, allowing 44, # AA, in the definition
of f does not weaken the corresponding forward error bounds.

To summarize, we have shown that, asymptotically, the backward error §(3, §) is
small after one step of iterative refinement. It is not clear how to obtain a more
precise result, analogous to Theorem 2.2, say (not even if we switch to using norms in
the definition of ). However, we can obtain further understanding from some
simple observations and numerical tests.

An ecasily identifiable case where our asymptotic result is dubious is when the
residual for the LS problem is zero or relatively small, i.e., when ||7||, /(| 4]l Ix]l,) =
O(u). In such cases the computation of r will be subject to severe numerical
cancellation and the computed 3 is likely to have few correct significant digits. As
a result, the inequality |47§| < ¢/47| |$| cannot be guaranteed to hold with ¢ = O(u),
and so in view of (4.7) we cannot always expect S(3, ) = O(u). One way to accommo-
date this difficulty is to adopt the technique of Arioli, Demmel and Duff, which we
mentioned at the end of section 3, and thus to allow a wider class of perturbations in
the right-hand side in the definition of . This approach was used in the LS context
by Arioli, Duff and de Rijk [2]. Further details are given below.

Another useful observation is that since 7 may be regarded as an arbitrary
parameter it may be beneficial to replace it by zero if the true residual is small. If we
set 7 = 0 in (4.7) the troublesome AT7 term disappears and we are left with

) b — A,
0,%) = _ = ax
PO.5) = max =,

(which, of course, is essentially (2.3)). After iterative refinement has converged, or has
been terminated, we can check whether (0, §) < B(5, ), and, if so, regard (0, §) as
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the backward error for the augmented system. It may be worthwhile to take p(0, §) as
the backward error even when (0, §) > S(3, ), because the corresponding forward
error bound is minimized as a function of the residual 7 when 7 = 02, 10, 21].
We have experimented with the iterative refinement procedure discyssed above
using MATLAB. We report results for three problems.
(1) Problem PR. The matrix

0o 2 1
_|10° 100 0
10° 0 10°

0o 1 1

is from [28] and we took b = (1, 1, 1, 1)T.

The following two classes of test problems were suggested by Bjorck [7].

(2) Problem V. The matrix A € R*!*® has theform 4 = VD wherev;; = (i — 1y ™'
and the diagonal matrix D is chosen so that the columns of A have unit 2-norm. The
solution vector is taken to be x = D~ !(10% 10%,.. ., 1) and the right-hand sides are
defined by b= Ax+ 6h, where A"h=0 with h normalized so that
k(A k], = 1.5 Al lx]| ;- The scalar 6 controls the size of the residual. Problems
where the coefficient matrix has widely differing row norms are obtained by
choosing w > 1 and setting D,, = diag(d;), where d; = wfori=1,11,21 and d; = 1
otherwise, and defining 4,, = D, 4, b,, = D,,b and h,, = D, 'h.

(3) Problem H. Here, Ae R®*® comprises the first five columns of the inverse of
the Hilbert matrix of order 6. The solution vector is given by x; = 1/i, and
b = Ax + 6h where ATh = 0 and x,(A)||hl, = 3.72 x 103 4|}l x] 2.

The details of our implementation of iterative refinement are as follows. We used
Householder QR factorization and solved the augmented system (4.2) as prescribed
in the appendix (see the explanation following (A.1)). For the convergence test we
took B(S, §) < u, where, based on (4.7), A, X) = max {f,, f,} with

VT (AL IR+ (Bl
5 |ATF|;
2

= AT )+
and where, with
£ = {i:(A"|F) < 15 = 1000(m + mull AC, Dl o [T, XD o s

o ”A(,I)HIH(YTT’-)ET)“@’ lf iega
= 0, otherwise.

The values of y4; and t; are those recommended in [1] and used in [2] (see our
comments at the end of section 3). Upon convergence we can assert that the
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computed § and J satisfy

I A+ AA[J [s] _ [b + Ab]
(48) [(A + 44,)F 0 11 4e |

where |44;] < ujdl, i=1,2, |Ab| < ulb| and |4¢)] < uy; if ie & or Ac; = 0 other-
wise. (We could of course extend the use of the tolerances 7; and y; to the first m of the
augmented equations, as in [2], but this was not necessary in our tests with dense
matrices.)

Selected results are reported in Tables 4.1-4.5. The notation is as follows. The
coefficient matrix of the augmented system is denoted by C; cond (4) = |||4¥| |4]|
is a generalization of the condition number (2.13) and appears in forward error
bounds of [2, 217 (4™ is the pseudo-inverse of 4); and p{x) is a computed approxi-
mation to the relative residual ||b — Ax|, /(] 4] 2l x[;) of the LS solution. As well as
showing f,, B, and . for each iteration, we tabulate (0, §), where y is the final
computed solution. Here are our comments on the results.

1. Iterative refinement converged in these and most other examples, although
not always after one iteration. An example where it failed to converge is Prob-
lem V with w=10'* and 6 =0 (after ten iterations f(3,7) > 10~2); how-
ever, if in this problem we interchange the large rows of 4 to the top (cf. point
4 below) then f(7, £) = 1.04 x 107>, and after one step of iterative refinement
B(3,9) =598 x 10717,

2. As we would expect, the modified definition of 8, was invoked for most of the
small residual problems, as indicated by the set # being nonempty.

3. Inseveralinstances where p(x) ~ u, §(0, ) = B(3, 7). Also, (0, ) < (3, §)in Table
4.2 for 8 = 0. Since B(0, ) is trivial to compute it seems advisable to evaluate it
whenever p(x) = O(u) and to consider using it in forward error bounds.

4. The coeflicient matrix 4 can have widely differing row norms in weighted LS
problems and in LS problems produced by the method of weighting for linearly
constrained LS problems [15, secs. 5.6.2, 12.1.5], [34]. It is well-known that in
such circumstances the solution computed by Householder QR factorization can
be unstable in the sense of having a large componentwise backward error [28],
[24, Ch. 17]. This is confirmed in Tables 4.1, 4.3 and 4.4, where the §, values are
large for the first iteration. The usual advice is to avoid this instability by
incorporating “partial pivoting style” row interchanges, as suggested in [28].
Our results suggest that an alternative that may be worth considering is to use
iterative refinement to stabilize the solution (or indeed one could use both
techniques together). In sparse problems a possible advantage of iterative refine-
ment is that it allows the row ordering to be chosen to minimize intermediate
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fill-in rather than to preserve stability (the sparsity of the R factor depends on the
column ordering but not the row ordering). We note, however, that to implement
iterative refinement it is necessary to store and re-use the orthogonal factor Q,
which may be undesirable. The method of semi-normal equations [7] avoids the
use of Q but has different stability properties. In the tables below Pg stands for

{1,2,3,4,5,6}.

Table 4.1. Problem PR.

Table 4.4. Problem V. w = 10*°.

cond {4) = 3.46€0, x,(A) = 8.32e5
cond (C) = 9.23e5, #,(C) = 1.73e6

cond (4) = 2.6%¢3, x,({4) = 9.95¢12
cond {C) = 5.03e15, x,{C) = 7.9%15

p{x) B©, ) Bi B I 14 px) B0, 9 I B2 &£
240e-7  1.30e-1  3.55¢-11 2.06e-10 @ 0 3.09-17 2.62¢-16 1.74e-5 9.86e-23 P
5.74e-17 3.70e-18 @ 9.76¢-12 9.86e-23 Pg
7.20e-15 3.10e-28 Pg
7.44¢-17 1.80e-32 Pg
. 1079 3.43e-17 2.4le-11 1.74e-5 9.86e-23 Pg
Table 4.2. Problem V. w = 1. 9.766-12 9.86023 P
7.25¢-15 3.10e-28 P,
cond (4) = 2.56e3, Ky{A) = 2223 1.04c-16 1.99¢-32 Pg
cond (C) = 3.36e6, ic,(C) = 2.66e6
6  px) B0, 8 B, £ 1 L17e-13 2.36e-2 1.70¢-5 1.49e-19 Pg
2.84e-11 9.86e-23 P
0 1.53e-16 7.39e-17 4.97e-15 1.16e-32 P 7.75¢-15 2.60e-28 Pg
8.00e-17 7.88e-33 P, 9.84¢-17 4.36e-30 P
107° 6.76e-13 2.4le-11 5.18e-15 5.23e-29 Pg 10 1.17¢10 1.00e0 7.45¢-7 2.87e-6 @
7.87e-17 4.03¢-30 Pg 1.60e-9 1.55-11 ¢
7.21e-14 1.02¢-15 0
1 6.76e-4 2362 4.70e-15 6.0le-16 6 7 65e-17 1.066-17 6
8.47e-17 1.21e-17 9
103 6.76e-1 1.0e0 6.10e-16 5.84e-16 0
7.62e-17 1.74e-17 0
Table 4.5. Problem H.
5 cond (4) = 4.16e6, x,(4) = 4.70e6
Table 4.3. Problem V. w = 10°. cond (C) = 5.77¢6, 15(C) = 8.89¢6
6 p(x) B0, ) 81 B &
cond (4) = 2.69¢3, k,{A) = 3.95¢7
cond (C} = 5.03¢10, x{C) = 7.99¢10 0 2.02-17 1.78¢-15 3.13e-14 2.26e-16 §
6 plx) PO B B, & 4.22¢-17 3.22e-15 0
6.14e-17 2.23e-16 @
0 20316 2.62¢-16 9.24e-11 4.22e-28 P 2.60e-17 3.36e-16 ¢
1.10e-16 4.22¢-28 Pg 1.88e-17 5.66e-17 @
1079 2.12e-16 2.41e-11 9.24e-11 4.60e-28 P, 10~9 7.92¢-13 8.66e-10 3.12e-14 2.35e-16 ¢
9.29e-17 4.22¢-28 P 4.01e-17 2.45¢-17 @
1 1.17e-8 2.36e-2 9.14e-11 1.60e-11 0 1 7.92¢-4 4.64e-1 1.66e-14 2.03e-16 @
1.1le-16 2.12¢-17 @ 1.25¢-17 1.46e-17 @
10 1.17e-5 1.00e-0 7.81e-12 1.60e-11 8 10° 7.92e-1 9.99e-1 2.28e-16 2.56e-16 6
8.14e-17 9.94e-18 @ 0.00e0  4.05¢-17 @
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Our overall conclusion is that iterative refinement provides an effective way to
enhance the stability of Householder and Givens QR factorization algorithms for
solving the LS problem. Our analysis and experiments put the refinement process on
a sound footing, although we have not derived conditions under which it is guaran-
teed to succeed. LAPACK includes iterative refinement in its routines for Gaussian
elimination [ 3,4]. We suggest it is worth considering supporting iterative refinement
for LS problems as well.
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Appendix.
A Error analysis results.

In this appendix we state componentwise error analysis results for the solution of
linear systems and least squares problems via the QR factorization. The proofs of
these results are given in [207.

Recall that our model for floating point arithmetic is (2.4). The constants used in
the results are defined as follows: y, = nu/(1 — nu); fyn = Yam+bn-+. fOr some small
integer constants a, b, ¢; and

o 2tmar/mn— 1)
"L = 2 /m(n — 1)
The results are stated for Householder QR factorization, but they remain valid (with

slightly different constant terms) when the QR factorization is computed using
Givens rotations.

Lemma A1 Let A€ R"™" be nonsingular. Suppose we solve the system Ax = b with

the aid of a QR factorization computed by the Householder algorithm. The computed
X satisfies

A+ F%=b+e,
where
IF| < tanGlAL el < po, 1 Hib|,
with
IGl, <3n*(1 +6,,), |H|,<2n(l +0,,).

The next result concerns the solution of the augmented system for a least squares
problem, which we take in the form
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r+ Ax = f
ATr =g

3]

where R; e R"™", then (A.1) transforms to

(A.1)

If A has the QR factorization

Q"r + [Iﬂx =0,
[RT01Q"r=g.

This system can be solved as follows:

x = R7Md, — h).

LemMA A.2 Let Ae R™™" be of full rank n < m and suppose the augmented system
(A.1) is solved using a QR factorization of A as described above. The computed % and

F satisfy
[ I A+E1} [f‘]_[f+e1:|
(4 + E)" 0 % g+e,|
where
|Ei| < pma GlAl, i=1:2,
les] < pim, 1 (Hul f| + H2|F)),
leal < fim,1 |ATI Hs |,
with

IGll; < 3mn(l + 6,,,)
[Hyll, < 3m*2(1 + 6,,1),
|Hzll2 < 5m**(1 + 6,1,
[H3llp < Tm2 gy 1 (1 + O41).
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