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IMPROVED ERROR BOUNDS FOR
UNDERDETERMINED SYSTEM SOLVERS*

JAMES W. DEMMELt AND NICHOLAS J. HIGHAM$

Abstract. The minimal 2-norm solution to an underdetermined system Ax b of full rank can
be computed using a QR factorization of AT in two different ways. One method requires storage
and reuse of the orthogonal matrix Q, while the method of seminormal equations does not. Existing
error analyses show that both methods produce computed solutions whose normwise relative error
is bounded to first order by ca2(A)u, where c is a constant depending on the dimensions of A,
2(A) IIA+II211AII2 is the 2-norm condition number, and u is the unit roundoff. It is shown that
these error bounds can be strengthened by replacing 2(A) by the potentially much smaller quantity
cond2(A) IA+I IA1112, which is invariant under row scaling of A. It is also shown that cond2(A)
reflects the sensitivity of the minimum norm solution x to row-wise relative perturbations in the data
A and b. For square linear systems Ax b row equilibration is shown to endow solution methods
based on LU or QR factorization of A with relative error bounds proportional to condo(A), just as
when a QR factorization of AT is used. The advantages of using fixed precision iterative refinement
in this context instead of row equilibration are explained.
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1. Introduction. Consider the underdetermined system Ax b, where A E
]Rmn with m _< n. The system can be analysed using a QR factorization

(1.1) AT Q [R 10

where Q IRnn is orthogonal and R IRmm is upper triangular. We have

(1.2) b- Ax RT O] QTx- RTyl,

where

[YI]--QTx.Y--
Y2

If A has full rank then Yl R-Tb is uniquely determined and all solutions of Ax b
are given by

Y2
Y2 arbitrary.

The unique solution XLS that minimizes Ilxl12 is obtained by setting Y2 0. We have

(1.3) XLs Q [Rb]
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AT(AAT)-Ib

A+b,

where A+ AT(AAT)-1 is the pseudoinverse of A.
Equation (1.3) defines one way to compute XLS. This is the method described in

[13, Chap. 13], and we refer to it as the "Q method." When A is large and sparse it
is desirable to avoid storing and accessing Q, which can be expensive. An alternative
method with this property was suggested by Gill and Murray [6] and Saunders [16].
This method again uses the QR factorization (1.1) but computes XLS as XLS ATy,
where

(1.5) RTRy b

(cf. (1.4)). These latter equations are called the seminormal equations (SNE), since
they are equivalent to the "normal equations" AATy b. As the "semi" denotes,
however, this method does not explicitly form AAT, which would be undesirable from
the standpoint of numerical stability. We stress that equations (1.5) are different
from the equations RTRx ATb for an overdetermined least squares problem, where
A Q[RT 0 IT E ]Rmn with m _> n, yet these are also referred to as seminormal
equations [4]. In this paper we are solely concerned with underdetermined systems so
no confusion should arise.

Other methods for obtaining minimal 2-norm solutions of underdetermined sys-
tems are surveyed in [5].

Existing perturbation theory for the minimum norm solution problem, and error
analysis for the above QR factorization-based methods, can be summarised as follows.

(1) Golub and Van Loan [7, Thm. 5.7.1] prove the following perturbation re-
sult. (Similar results are proved in [13, Thm. 9.18] and [20, Thm. 5.1].) Here,
a(A) denotes the ith largest singular value of A E ]R"’ and, if rank(A) m,

THEOREM 1.1. Let A ]Fmn and 0 b lRm. Suppose that rank(A) m _< n
and that AA IR"n and Ab lRm satisfy

mx{llAAll/llAll, IIAbll/llbll} < am(A).

If x and are the minimum norm solutions to Ax b and (A + AA) b + Ab,
respectively, then

(1.6) _< min{3, n m + 2}n2(A) + O(e2).

This result shows that small relative changes in the data A and b produce relative
changes in the minimum norm solution x that are at most n2(A) times as large. Unlike
for the overdetermined least squares problem there is no term in n2(A)2.

(2) Arioli and Laratta [2, Thm. 4] show that the computed solution from the
Q method satisfies

(1.7) <_ clun2(A) + O(u2),
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TABLE 1.1
Stability classification scheme.

Normwise
Row-wise
Componentwise

Backward stability Forward stability
N N
R R
C C

where ci denotes a modest constant depending on rn and n, and u is the unit roundoff.
(Arioli and Laratta actually analyse a slightly more general problem in which IIx-wll2
is minimized for a given vector w; we have taken w--0.)

(3) Paige [15] shows that the computed solution from the method of seminormal
equations satisfies

a:(A)c:u(1 + n2(A)c3u)(1.8) 11"2- xl12 <_ a2(A)clu +Ilxll 
The bounds (1.7) and (1.8) are of the same form as (1.6). One implication of

these existing results is that both the Q method and the SNE method are stable in
the sense that the relative errors in the computed solutions reflect the sensitivity of
the minimum norm problem to general perturbations in the data.

The purpose of this paper is to show that the results in (2) and (3) can be
strengthened significantly by using componentwise analysis. First, in 2, we prove a
version of Theorem 1.1 for componentwise perturbations; thus we measure AA and
Ab by the smallest e such that

(1.9) IAAI <_ BE, IAbl <_ ef,

where E _> 0 and f _> 0 contain arbitrary tolerances and inequalities hold compo-
nentwise. We obtain an analogue of (1.6) with a2(A) replaced by a potentially much
smaller quantity that depends on A, x, E, and f.

In 3 we show that the term t2(A) in (1.7) and (1.8) can be replaced by

conde(A) IA+I IAI I1,

which is a generalization of the condition number II IA-I IA1112 for square matrices
introduced by Bauer [3] and Skeel [17]. This is important because cond2(A) can be
arbitrarily smaller than a:(A), since cond2(A) is invariant under row scalings A --, DA
(D diagonal and nonsingular), whereas a2(A)is not. And cond2(A) cannot be much
bigger than a2(A) since

(1.10) cond2(A) <_ ]A+] 1121] IAI 112 <- nilA+IJ211AII2 na2(A).

In 4 and 5 we investigate stability issues, and we encounter several different
types of stability. To put these different types into perspective, we present a scheme
that classifies six different kinds of stability in Table 1.1. (We appreciate that it can
be counterproductive to over-formalize stability, but we believe that this scheme helps
to clarify the overall picture.)

To explain the terminology we define for A E ]R"n, with m _< n, the backward
error

WE,I(Y) min{e B AA E lR"’, Ab ]R" s.t. y is the minimum norm

solution to (A + AA)y b + Ab, and IAAI _< BE, IAbl <_ f},
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where E >_ 0 and f >_ 0 are given. Note that if we were to remove the minimum norm
requirement on y in the definition of WE,f then the backward error would be given by

Ib- Ayli
(1.11) max

as shown in [14]. The three measures of backward stability in Table 1.1 correspond
to the following choices of E and f, where en (1, 1,..., 1)T E ]Rn"

(1.12)

Tnormwise (wN) EN- IIA[12eme,, fN Ilbll2em,
row-wise (wR) ER IAI%eT, fR Ibl,

componentwise (wC) Ec IAI, fc Ibl.

A small value for wR(y) means that y is the minimum norm solution to a perturbed
system where the perturbation to the ith row of A is small compared with the norm
of the ith row (similarly for b). We say, for example, that a numerical method for
solving Ax b is in backward stability category R (or is row-wise backward stable)
if it produces a computed solution such that wR() is of order the unit roundoff.

For each type of backward error there is a perturbation result that bounds

IIx yl12/llXl12 by a multiple of WE,f (y), and the multiplier defines a condition num-
ber. As explained in 2, for underdetermined systems the conditions numbers are

2(A) for wN, cond2(A) for w, and a quantity cond2(A, x) that depends on both A
and x for we. Continuing the "R-stability" example above, we say that a method
is in forward stability category R if it has a forward error bound of order cond2(A)
times the unit roundoff. An algorithm that has backward stability X (where X N,
R, or C) automatically has forward stability X; one of the reasons these definitions
are useful is that an algorithm can have forward stability X without having backward
stability X.

In this terminology, the gist of 3 is that the Q method and the SNE method have
forward stability R, whereas previous results guaranteed only forward stability N.

In 4 we explain why the Q method is (nearly) row-wise backward stable but the
SNE method is not backward stable at all. We give some numerical results to provide
insight into the error bounds, and to illustrate the performance of fixed precision
iterative refinement with the SNE method.

In 5 we consider the implications of the results of 3 for square linear systems. We
show that row equilibration of the system Ax b allows methods based on LU and QR
factorization of A to produce computed solutions whose relative errors are bounded
in the same way as when a QR factorization of AT is used--namely by a multiple
of cond(A)u (corresponding to row-wise forward stability). We explain why fixed
precision iterative refinement leads to an even more satisfactory computed solution
than row equilibration, and we provide two numerical examples for illustration.

2. Componentwise perturbation result. In this section we prove the follow-
ing componentwise perturbation result for the minimum norm problem, and use it to
determine the condition numbers for the perturbation measures in (1.12).

THEOREM 2.1. Let A ]Rmn and 0 =/= b lRm. Suppose that rank(A) m _< n,
and that

]AAI

_
E, IAbl f,
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where E > O, f >_ O, and el[Eli2 < am(A). Ifx and are the minimum norm solutions
to Ax b and (A + AA) b + Ab, respectively, then

(2.1)

(ll lI A+AI ET" IA+Txl II + IA+I (f + Elxl)I12)ilxli2 + O(d).

Proof. A + AA has full rank so we can manipulate the equation

(A + AA)T((A + AA)(A + AA)T)-I(b + Ab)

to obtain

x (I A+A)AAT(AAT)-lb + A+(Ab AAx) + O(e2)

(I A+A)AATA+Tx + A+(Ab- AAx) + O(e2).

Taking norms and then using absolute value inequalities, together with the mono-
tonicity property Ixl < y = Ilxl12 < IlYlI2, we have

I1- xl12 I1(I A+A)AATA+Tx[[ + IIA+(Ab AAx)[Ie + O(e)
-< (11 I A+AI ET" IA/Txl I1 + IA/I (f + Elxl)[1) + O(d),

as required.
We note that for given A, b, E, and f there exist AA and Ab for which the bound

in (2.1) is attained to within a constant factor depending on n. This is a consequence
of the fact that the two vectors on the right-hand side of (2.2) are orthogonal. Also,
it is clear from the proof that (2.1) is valid with the 2-norm replaced by the oc-norm.

By substituting the E and f from (1.12) into Theorem 2.1 we can deduce the
condition numbers corresponding to our three different ways of measuring the per-
turbations AA and Ab. For the componentwise measure the condition number is
clearly

(2.3)
cond2(A, x) (111I A+AI IATI IA+Txl ll2

+ IA+I (Ibl + IAIIxl)112)/11x112-

Replacing b by its upper bound [Al[x simplifies this expression while increasing it by
no more than a factor of 2.

For the row-wise measure the bracketed term in the bound in (2.1) is within a
factor depending on n of cond2(A), hence we can take cond2(A) as the condition
number. In showing this, we need to use the equality III- A+AII2 min{1, n- rn}
(which can be derived by consideration of the QR factorization (1.1), for example),
and the observation that if B E ]Rmn and B >_ 0, then

1

Note that when Ixl , cond2(A) differs from cond2(A, x) by no more than a factor
of about v/. Finally, for the normwise measure the condition number is a2(A) (as
implied by Theorem 1.1). Table 2.1 summarises these results.
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TABLE 2.1
Condition numbers.

Measure Condition number
Normwise
Row-wise
Componentwise

2(A)
cond2(A)
cond2 (A, x)

In the error analysis of the next section we need to use Theorem 2.1 with E
IAIH, where H is a given matrix. In this case, taking also f Ibl, it is convenient to
put (2.1) in the form

(2.4) I1 xl12 < min{3, n m + 2} max{llHII2 1}cond2(A)e + O(e2).

If IIHII2 1, this is precisely (1.6) with 2(A) replaced by cond2(A), this difference
reflecting the stronger assumption made about the perturbations for (2.4).

3. Error analysis. In this section we carry out an error analysis of the Q method
and the SNE method. We assume that the floating point arithmetic obeys the model

fl(xopy) (xopy)(1 + 5), [5[ _< u, op =.,/,
fl(x + y) x(1 q- a) =k y(1 -b/), [a[, l/3[ _< u,

fl(v/-) x/(1 q-6), [6[ _< u.

We consider first the Q method, and we assume that the QR factorization (1.1)
is computed by Householder transformations or Givens transformations. In [12,
Cor. A.8] it is shown that if R is the computed upper triangular factor, there ex-

ists an orthogonal matrix Q such that

(3.1) AT + AAT [ ]0

where

[AAT[ <_ m,nulAT[
and [[m,n[[2 _( IAm,n Here and below we use #m,, generically to denote a modest
constant depending on m and n; we are not concerned with the precise values of the
constants so we will freely write, for example, m,n 2t- Pm,n! m,n’l!

The Q method solves the triangular system RTyl b and forms x Q[yT, 0 IT.
Standard analysis shows that the computed 1 satisfies

From [12, Lemma A.7] the computed solution satisfies

(3.4) =)[1]0 +g’

where
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(We emphasise the important point that the same orthogonal matrix Q appears in
(3.1) and (3.4).)

Ideally, we would like to use the basic error equations (3.1)-(3.5) to show that
is the exact minimum norm solution to a perturbed problem where the perturbations
are bounded according to IAAI _< elA and IAbl < elbI. The forward error could then
be bounded by invoking (2.1). Unfortunately, this componentwise backward stability
result does not hold. We can, nevertheless, obtain a forward error bound of the form
(2.4) by using a mixed forward and backward error argument.

From (3.3), (3.4), and (3.1) we have

b=[(+) O].IO]
(A + F)5,

where

(3.6)
F AA + [AT

Since (A + F)T has the QR factorization (A + F)T Q [( + A)T 0] T it follows
from (3.3) and (3.6) that 5 is the minimum norm solution to (A + F)5 b as long as

liE]J2 < am(A) (so that A + F has full rank). From (3.1)-(3.3) we have

IFI < ulAI T T 2Tam,, + ItmulA[(I+uGm,n)lll
ulAIH,,n.

Hence we can invoke (2.4) to obtain

(3.7) < #m,ncond2(A)u -4- O(u2).

Now from (3.4), (3.5), and (3.6)we have

I1- 11 Ilgll
IIll=u/O(u2)(3.8) < tm,n I1 112u "m,n

t,nllxll2u / o(u2).

Combining (3.7) and (3.8) we conclude that

(3.9) I1- xl12 < #,,nco"nd2(A)u + O(u2).
llxl

Now we analyse the SNE method. As for the Q method, (3.1) and (3.2) hold for
the computed triangular factor R. The computed solution to (1.5) satisfies

(3.10) ( +)(+) , I1 ,11,
and the computed solution satisfies

(3.11) - AT+ g, Igl mulATIll
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Taking a similar approach to the analysis for the Q method we write

+ A,(.le)
where

(A + AA)T,
(.) ,,
(3.14) A AT(- ) AATy + g.

Note that 5 is the exact minimum norm solution to (A + AA)x b and so once again
(3.7) holds.

For later use we note that from (3.1),

(3.15) A + AA TT
where Q1 comprises the first m columns of Q, and hence, using (3.13),

(3.16) Off .
It remains to bound A. Straightforward manipulation of (3.10) and (3.13) yields

h-h-h+-h + o()
h-l(h-O+h9) + o(),

where we have used (3.16). Premultiplying by AT and using (3.15) gives

which leads to

(a.17) IA(Y- )ll ,(ll Ifi-l Il llllll + l-lyl II) + o()
To bound I-TI [T[ [[2, note that for the exact QR factorization we have

[R-T[ [RT ]2 [QA+[ ]AQ] ]2 mcond2(A).
Hence

(3.18) [-T[. [T [[2 m cond2(A + AA) m cond2(A) + O(u).

To bound [R[. ][ [ in (3.17) we note first that for the exact R and y,

11nl. Il 1 QAI lu II: [ IAl lul
Now, since x ATy, we have Ax (AAT)y or y A+Tx. Hence

(3.19) ]AT] [Y 2 AT[ ]A+T] [x [2 cond2(A)[x[2.

It follows that for the computed R and y,

(3.20) [" ]Y[ [2 cond2(A)[]xl[2 + O(u).
Combining (3.14), (3.17), (3.18), (3.20), (3.11), and (3.19)we have

[[Abl[2 ,m,ncond2(A)u[[x[]2 + O(u2).
Together with (3.7)and (3.12)this yields

II- xl[: ,,ncond2(A)u + O(u2).
IIxll
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4. Discussion and numerical results. The analysis in the previous section
shows that for both the Q method and the SNE method the forward error is bounded
by a multiple of cond2(A)u, so both methods are forward stable in the row-wise sense.
Before giving some numerical examples we briefly consider what can be said about
backward stability.

For the Q method, the analysis of 3 proves the following result about the com-
puted solution . There exists a vector 5 and a matrix F such that 5 is the minimum
norm solution to (A + F)5 b where

[FI < ulAIHm, < #.,nulAleeT IIFI[: <

and

(This result, without the componentwise bound on F, is also proved in [13, Thm.
16.18].) Thus is relatively close to a vector that satisfies the criterion for row-wise
backward stability, and so the Q method is "almost" row-wise backward stable. Note
also that, from the above, has a relatively small residual:

(4.1) lib- A[12 < "m’,rilAII2iill2u + O(u2).

Interestingly, (4.1) implies that itself solves a slightly perturbed system, but it is

not, in general, the minimum norm solution.
For the SNE method it is not even possible to derive a residual bound of the

form (4.1). The method of solution guarantees only that the seminormal equations
themselves have a small residual. Thus, as in the context of overdetermined least
squares problems [4], the SNE method is not backward stable.

A possible way to improve the backward stability of the SNE method is to use
iterative refinement in fixed precision, as advocated in the overdetermined case in [4].
Some justification for this approach can be given using the analysis for an arbitrary
linear equations solver in [12].

We have run some numerical experiments in MATLAB, which has a unit roundoff
u 2.2 x 10-16. In our experiments we rounded the result of every arithmetic
operation to 23 significant bits, thus simulating single precision arithmetic with usp
1.2 x 10-7. The double precision solution was regarded as the exact solution when
computing forward errors.

We report results for several 10 x 16 matrices A, with the right-hand sides b
chosen randomly with elements from the normal (0, 1) distribution. We report for
each approximate solution , the normwise relative error

and the three relative residuals

Ib-pX m ,x (Exit. + fx)’
X N, R, C,

where EX and fx are defined in (1.12). Iterative refinement in fixed precision was
used with the SNE method until either pN() <_ USp or five iterations were done.
Note that if we were to use the x>norm in defining EN and fN in (1.12), then
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pN() _< pR() would be guaranteed; for the 2-norm, pg() > pn() is possible. We
also report the three condition numbers for each problem. There is no strict ordering
between these condition numbers (partly, again, because of the choice of norm), but
there are constants cl and c2 depending only on n such that

cond2(A, x) _< ClCOnd2(A) _< c22(A)

(see (1.10) and 2).
The results are presented in Tables 4.1-4.6. The matrices A in Tables 4.1-4.3 are

random matrices with geometrically distributed singular values ai ai, generated
using the routine randsvd of [10]. In Table 4.4, Ax b is the same system used
in Table 4.1, but with the fifth equation scaled by 215 32768. In Table 4.5 the
system is the one used in Table 4.1 but with the eighth column of A scaled by 215.
In Table 4.6, A is a Kahan matrix--an ill-conditioned upper trapezoidal matrix with
rows of widely varying norm [7, p. 245], [10].

The key features in the results are as follows.
(1) The error bounds of the previous section are confirmed. Indeed, for both the

Q method and the SNE method the heuristic

2() I1- xl12 cond2(A)u

predicts the error correctly to within an order of magnitude in these examples.
(2) The independence of the forward errors on the row scaling of A is illustrated

by Tables 4.1 and 4.4. However, column scaling can have an adverse effect, as shown
in Table 4.5.

(3) The relative residuals confirm that the Q method is (almost) row-wise back-
ward stable and that the SNE method is not even normwise backward stable. The
relative residuals for the SNE method exhibit dependence on cond2(A) in these ex-
amples (dependence of the normwise residual on 2(A) in the case of overdetermined
systems is proven by Bjhrck in [4, Thm. 3.1]). Iterative refinement can produce a
small relative residual, but can fail on very ill conditioned problems, as in Table 4.3.

The condition numbers displayed in the tables can all be estimated cheaply given
a QR factorization of AT. For example, we show how to estimate cond2(A,x). This
differs by at most a factor x/ from condo (A, x). We consider only the first term
of condo (A, x) in (2.3), as the second term can be treated similarly. As in [1], we

can convert this norm of a vector into a norm of a matrix: with g IATIIA+Txl and
G diag(gi), we have

I A+AI [ATI IA+Txl II r A+AIg I[
I A+AIGe II [r_ A+A[G II
I(I- A+A)GI I1
(I- A+A)G I1,.

The latter norm can be estimated by the method of [8], [9], and [11], which estimates
I]BII1 given a means for forming matrix-vector products Bx and BTy. Forming these
products for BT (I- A+A)G involves multiplying by G and Q or their transposes,
and solving triangular systems with R and RT.
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TABLE 4.1
A- randsvd([10, 16], le2), 2(A)-- le2, cond2(A)--8.63el, cond2(A, x)- 1.57e2.

() a() c() ()
Q method 1.83e-8 9.88e-9 1.42e-7 2.01e-6
SNE 5.11e-7 2.79e-7 4.40e-6 4.97e-6

1.52e-8 6.45e-9 9.64e-8 1.99e-6

TABLE 4.2
A--randsvd([10, 16], lea), a2(A)-- le4, cond2(A)--5.43e3, cond2(A, x)- 1.05e4.

() .() c() ()
Q method 5.16e-9 6.84e-9 9.16e-8 1.29e-4
SNE 1.30e-5 1.56e-5 2.36e-4 2.30e-4

4.29e-9 4.63e-9 8.01e-8 1.04e-4

TABLE 4.3
A- randsvd([10,16], le6), a2(A)- le6, cond2(A)- 4.30e5, cond2(A, x)--8.86e5.

() () pc() ()
Q method 6.88e-9 5.78e-9 9.18e-8 6.50e-3
SNE 3.58e-3 1.69e-3 2.56e-2 2.47e-2

5.17e-5 2.47e-5 3.74e-4 1.28e-2
5.39e-6 2.62e-6 3.96e-5 1.11e-2
2.05e-5 9.33e-6 1.41e-4 1.11e-2
1.51e-5 6.94e-6 1.05e-4 1.27e-2

TABLE 4.4
A- Drandsvd([10, 16], le2), a2(A)= 1.63e6, cond2(A)- 8.63el, cond2(A, x)-- 1.57e2.

Q method 9.24e-9 9.88e-9 1.42e-7 2.01e-6
SNE 9.26e-7 2.79e-7 4.40e-6 4.97e-6

5.70e-9 6.45e-9 9.64e-8 1.99e-6

5. Implications for square linear systems. All the results in 2 and 3 are
valid when m n. Theorem 2.1 reduces to a straightforward generalization of a result
in [17, Thm. 2.1]. However, the error bound

(5.1)

_
#ncond(A)u + O(u2)

for the Q method is not a familiar one for square systems. (We have switched to
the oc-norm, which is the more usual choice for square systems.) In fact, a bound of
the form (5.1) holds also if we solve Ax b using an LU factorization (with partial
pivoting) of AT. Of course, when solving a square system Ax b, it is more natural
to use an LU or QR factorization of A than of AT. But if a factorization of A is used,
then no bound of the form (5.1) holds in general--the best we can say is that

<_ #,n(A)u + O(u2).

We note, however, that there is a simple way to achieve a bound of the form
(5.1) for LU and QR factorization of A: work with the scaled system (DA)x Db
instead of Ax b, where B DA has rows of unit 1-norm. This follows from (5.2)
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TABLE 4.5
A----randsvd([10,16], le2)D, a2(A)-- 1.37e6, cond2(A)-- 7.81e5, cond2(A, x)-- 1.35e2.

() () c() ()
Q method 2.42e-9 5.70e-9 2.95e-4 9.29e-3
SNE 4.23e-3 5.89e-3 9.98e-1 2.61e-2

1.39e-5 1.93e-5 5.89e-1 1.75e-3
4.24e-7 5.90e-7 4.34e-2 3.60e-5
3.02e-9 4.20e-9 3.12e-4 1.29e-6

TABLE 4.6
A kahan([10, 16]), 2(A) 6.29e5, cond2(A) 9.58e0, cond2(A, x) 1.02el.

() .() c() ()
Q method 1.22e-8 3.52e-9 4.99e-8 1.79e-7
SNE 8.00e-8 3.42e-8 3.27e-7 3.35e-7

and the fact that a(B) condo(A). To verify the latter equality note that if
D-1 diag(IAle), then

condo(A) --II IA-1I IAI I1 -II IA-I[ IAI I1 -II IA-11D-e

It is interesting to compare this row equilibration strategy with fixed precision iterative
refinement (FPIR). It is known that under suitable assumptions, FPIR in conjunction
with LU factorization with partial pivoting [1], [18] or QR factorization [12] leads to a
computed such that wC() O(u), that is, FPIR brings componentwise backward
stability. From an oc-norm version of Theorem 2.1 we see that wC() <_ u implies

I1- xll 2 cond (A, x)u + O(u2),
Ilxll

where

condc,,:)(A x) IA-I[ IAI" Ixl II

This is a stronger bound than (5.1) because condo(A, x) <_ condo(A) (with equality
for x e) and for some A and x, condo(A, x) << condo(A) (see, for example, a 3 3
example of Hamming quoted in [17, p. 500]).

Skeel [17], [19] looks in detail at the possible benefits of row scaling for LU fac-
torization. In [17, 4.2] he shows that for the scaling 0-1 diag(IAIIxl) the forward
error bound is proportional to cond(A,x); unfortunately, since x is unknown, this
"optimal" scaling is of little practical use. Row equilibration can be regarded as
approximating Ix[ by e in the optimal scaling.

To summarise, we regard row equilibration as a "quick and dirty" way to achieve
a "cond-bounded" forward error--quick, because the scaling is trivial to perform, and
dirty, because the forward error bound is independent of the right-hand side b and
there is no guarantee that a small componentwise backward error will be achieved.
In contrast, FPIR produces a small componentwise backward error and has a sharper
forward error bound that depends on b (but FPIR may fail to converge).
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TABLE 5.1
A-- Vg, x- e, ao(A)- 4.27e5, condo (A) 1.19e3, condo(A, x)-- 1.19e3.

() .() c() ()
LU with FPIR 2.11e-8 6.25e-7 3.13e-6 1.81e-3

1.65e-8 1.65e-8 8.26e-8 1.79e-5
LU with equilibration 6.74e-9 1.91e-8 1.72e-7 2.38e-5
QR with FPIR 1.13e-8 7.47e-6 6.73e-5 3.85e-3

3.51e-9 1.06e-8 8.28e-8 1.44e-5
QR with equilibration 2.3e-8 3.71e-8 3.34e-7 1.60e-4

TABLE 5.2
A- Vii, b--e, ao(A)--6.68e7, condo(A)- 9.17e3, condo(A, x)- 5.27el.

() .() c() ()
LU with FPIR 2.18e-12 2.57e-7 4.82e-6 5.23e-5

4.57e-12 1.53e-9 5.83e-8 6.83e-7
LU with equilibration 1.22e-10 9.96e-9 2.88e-6 6.24e-5
QR with FPIR 1.95e-ll 1.64e-5 1.48e-4 3.59e-4

4.48e-12 4.86e-9 9.96e-8 1.38e-6
QR with equilibration 3.75e-9 4.75e-9 5.83e-6 1.38e-5

We illustrate our observations with two numerical examples computed using
MATLAB in simulated single precision, as in 4. For odd n 2k + 1, let Vn be
the Vandermonde matrix with (i,j) element (-k + j 1)i-1. We solved two systems
VEX b by both LU factorization with partial pivoting and QR factorization, in each
case trying both FPIR and the row equilibration discussed above.

The two systems were chosen to illustrate two extreme cases. For the first prob-
lem, V9e b, reported in Table 5.1, condo(A) cond(A,x) 3---a(A) and row
equilibration is about as effective as FPIR as measured by the size of the compo-
nentwise backward error and the relative error. For the second system, VllX e,
reported in Table 5.2, cond(A,x) 74cond(A) << (A)and FPIR achieves
a significantly smaller componentwise backward error and relative error than row
equilibration.

We also tried using a scaling obtained by perturbing the equilibrating transfor-
mation D diag(IAle)- to the nearest powers of 2, so as not to introduce rounding
errors. This led to final errors sometimes larger and sometimes smaller than with D.
In any case, from the point of view of the error bounds the rounding errors introduced
by the scaling are easily seen to be insignificant.
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