APPARC PaA2 Deliverable
ESPRIT BRA III Contract # 6634

A Strassen-Type Matrix Inversion Algorithm
for the Connection Machine

Susanne M. Balle
Per Christian Hansen
UNIeC
Danish Computing Center for Research and Education
Building 305, Technical University of Denmark
DK-2800 Lyngby, Denmark
Susanne.M.Balle@uni-c.dk
Per.Christian.Hansen@uni-c.dk

Nicholas J. Higham
Department of Mathematics
University of Manchester
Manchester M13 9PL
United Kingdom
na.nhigham@na-net.ornl.gov

October 26, 1993

In addition to the support from the EEC ESPRIT Basic Research Action
Programme, Project 6634 (APPARC), S. M. Balle and P. C. Hansen were
supported by NATO Collaborative Research Grant 5-2-05/RG900098, and
N. J. Higham was supported by Science and Engineering Research Council
grant GR/H52139.

Contents

1 Introduction
1.1 The Need for Alternative Algorithms
1.2 Performance Versus Implementation Time
1.3 Why Consider Strassen’s Algorithm?
1.4 Some Related Issues
1.5 Organization of the Report,

2 Strassen’s Matrix Inversion Algorithm and Data Layout
2.1 The Algorithm
22 DataLayout.

3 Forward Error Analysis
3.1 The Inherent Instability of the Method
3.2 Theoretical Error Bounds
3.3 Experimental Error Bounds
4 Stabilization of the Algorithm
4.1 Diagonal Perturbation
4.2 The Amount of Stabilization
5 Performance Results

5.1 Performance of Strassen’s Algorithm
5.2 Performance of Block LU Factorization.

Final Comments and Future Research

10
10
11
14

16
16
17

19
19
22

23

1 Introduction

This status report describes the current state of our work in the APPARC
project on dense matrix computations on massively parallel processors. For
large dense matrices, the key problem is often the large amount communi-
cation associated with the operations on two-dimensional arrays. Hence, we
must seek algorithms that map well onto the processor so as to minimize
communication overhead.

1.1 The Need for Alternative Algorithms

Linear algebra routines play an essential role as the fundamental “building
blocks” for almost all mathematical software. Hence, it is crucial to have
fast and reliable implementations of linear algebra routines available on any
given computer. The LAPACK library [1] provides such software for a vari-
ety of high-performance computers, including vector computers and shared
memory parallel computers. This library is based on block algorithms [12]
that make extensive use of the Level 2 and 3 BLAS routines [15, §5.1] which
can be implemented very efficiently on these types of computers.

However, the software in the LAPACK library may not be so useful on
certain other types of parallel computers, including massively parallel com-
puters such as the Connection Machines CM—-200 and CM-5 and the Mas-
Par MP-1. At first, this seems odd because the inherent data-parallelism
in the block steps of the LAPACK routines seems very well suited for mas-
sively parallel computers; i.e., on these machines one would expect that good
data-parallelism can be achieved on the fine-grained level (and not at the
coarse-grained block level). However, data-layout and communication play
an extremely important role on these machines, and it turns out to be these
two issues that are the most important for the speed of any algorithm. For
example, the layout that may be best for matrix multiplication may be a
very bad layout for back substitution, say, and intermediate data shuffling is
very time consuming. The same holds for communication—a layout suited
for matrix addition may be very bad for matrix multiplication, for example.

Hence, even though the BLAS routines—or at least some of them—can
be implemented quite efficiently for specific data layouts, it is not practical to
build numerical linear algebra routines on top of them. As a consequence, all
the linear algebra routines in the CMSSL Library for CM—-200 and CM-5 are
“hand-tuned” implementations drawing upon specialized low-level routines
not available to the user. For example, solution of linear systems of equations

is done by a partitioned block algorithm (in the terminology of [14]) with
a block-cyclic data layout; see [19] for more details. The algorithm on the
MP-1 is a point algorithm with a cyclic layout.

Although such specialized software often provides very efficient imple-
mentations, it is difficult to maintain the software and also difficult to port
it to new hardware and software releases and related architectures. Hence,
although solution of linear systems of equations is one of the classical topics
in numerical analysis, there is still a need to develop new algorithms that
are well-suited to today’s high-performance computers.

1.2 Performance Versus Implementation Time

One of the key issues in connection with today’s massively parallel computers
is the large amount of time that one must spend in developing efficient
implementations on these computers. The development of an efficient LU
factorization routine for the CMSSL Library has required several man-years.

This clearly illustrates that “alternative linear algebra routines”, such
as Strassen’s matrix inversion algorithm, may still be important if one is
not willing—or not able—to put a large effort into hand tuning a certain
implementation. The algorithm that we describe was implemented with
relative ease on the CM—200 in less than one month!

In this connection we should also mention that the results presented
in [5] show that Strassen’s algorithm was able to outperform the linear
equation solver in an earlier version of the CMSSL (based on Gauss-Jordan
elimination), simply because this routine was much less “hand-tuned” than
the current CMSSL L U-factorization routine.

We believe that this is in fact the general picture on massively parallel
computers. Here, one seems to be faced with the alternatives:

e Spend a lot of effort on making a very careful implementation, prob-
ably based on specialized low-level subroutines.

e Use an alternative algorithm (perhaps based on a modular design)
that can be implemented in much less time, and whose performance is
acceptable—although slower than the “hand-tuned” implementation.
The simpler the algorithm, the more likely it is to be portable.

It is here that we see an important application of alternative linear algebra
routines.

Figure 1.1 illustrates this point for the Connection Machines. Here,
we know that partitioned block algorithms with block cyclic layout—when

file=diagram.eps,height=10.0cm

Figure 1.1: Performance versus implementation time for the CM-200.

carefully implemented—are currently the algorithms that yield best perfor-
mance [7]. However, alternative algorithms—such as Strassen’s method—
give an acceptable performance and can be implemented with much less
effort.

1.3 Why Consider Strassen’s Algorithm?

When searching for new algorithms, one may sometimes have to break with
the traditional guidelines in numerical analysis and find new approaches.
One approach, suggested in [11] and [5], is based on the following three-step
paradigm:

1. Use a highly parallel algorithm that may sometimes fail.

2. Use a simple and reliable technique for detecting when the algorithm
fails.

3. If an unreliable solution is detected, resort to some other strategy.

Regarding Step 3, Demmel [11] suggested recomputing the desired result
using a slower but more reliable algorithm. This approach is useful if, for
example, the algorithm under consideration is very rarely unstable or very
fast compared to the stable algorithm. As a second approach, in other
situations it is possible to re-use the quantities already computed in Step
1, combined with an appropriate low-cost stabilization technique, and thus
avoid a complete restart. Such a technique was suggested by Balle and
Hansen in [5] in connection with matrix inversion.

The present paper extends the analysis from [5]. The key idea is that if
we want to solve the linear system of equations Ax = b, and if an approx-
imate inverse A~! can be computed quickly, then it may be more efficient
to use this approximate inverse to compute x = A~'b than to compute z
by means of (block) LU factorization. Our approach is to compute an ap-
proximate solution # = A~'b and then improve it by means of iterative
refinement or by some iterative method using A1 as a preconditioner.

We use an asymptotically fast method for computing A~! that dates
back to Strassen’s 1969 paper [21] on fast matrix-matrix multiplication by a
recursive algorithm. Strassen’s matrix inversion algorithm is recursive and

its complexity is O(n'°827) operations when the recursion is continued down
to the 1 x 1 level, where n is the order of A. In practice one does not
normally recur down to the 1 x 1 level, since a lower operation count and
lower computational overheads are obtained by terminating the recursion
early. An important feature of Strassen’s inversion algorithm is that it is
based on operations on block matrices, and these may provide enough data
parallelism to make the algorithm suited for massively parallel computers.
We remark that iterative improvement of # = A~!b, once A~! has been
computed, is only an O(n?) process.

Our use of Strassen’s matrix inversion algorithm is motivated by the
success of Strassen’s matrix multiplication method [21], which has turned
out to be useful on high-performance computers [2, 4, 10]. It is found that
although the rounding error properties of this algorithm are less favorable
than for conventional matrix multiplication, the algorithm is still useful as
a Level 3 BLAS routine in many circumstances [13, 17]

As we shall see in §3.1, Strassen’s matrix inversion algorithm is funda-
mentally unstable. The main reason is that it involves the inversion of sub-
matrices on each recursion level. The key idea in the algorithm we develop
is that if one of these submatrices is ill-conditioned then the computation is
stabilized by perturbing this submatrix to make it better conditioned. As
long as the perturbation is small enough, the computed approximate inverse
A1 can still be used for refining # = A~!b as outlined above. It is this
stabilization technique, in which the computed results are re-used instead
of switching to a different algorithm, that puts this algorithm in the second
class of algorithms falling under the three-step paradigm outlined above.

A crucial point in the above algorithm is the decision when to add sta-
bilization to a submatrix, and how much stabilization to add. There is
obviously a tradeoff between adding too much stabilization, so that the
approximate inverse A1 is too far from the exact A~ and too little stabi-
lization, so that the computed A~ is too much contaminated by the effects
of rounding errors (which are proportional to the condition number of the
particular ill-conditioned submatrix or submatrices). One important goal of
our analysis here is to guide this decision.

It this paper, we focus on the computation of the approximate inverse
A~1, since this is the crucial step in solving linear systems Az = b via
Strassen’s method. We make the important assumption that the matrix A
is well-conditioned; otherwise, other methods (based on, e.g., regularization)
should be used.

1.4 Some Related Issues

We want to mention at this point that our interest in this algorithm is also
motivated by one of the so-called “superfast” algorithms for inversion of
a Toeplitz matrix, described by Bitmead & Anderson [9]. This algorithm
is mathematically equivalent to Strassen’s inversion algorithm; however, the
operations are performed by means of FFTs, using the low displacement rank
structure of the involved submatrices. In this way, a O(n log®n) algorithm
is obtained. Since the Bitmead-Anderson algorithm is based on Strassen’s
inversion algorithm, our stabilization technique can easily be applied to the
Bitmead-Anderson algorithm without changing its complexity. We shall not
pursue this aspect further here, but leave it to a separate investigation.

Two quite different methods for stabilizing Strassen’s matrix inversion
algorithm are proposed by Bailey & Ferguson in [3]. Their first method is
based on the observation that if one submatrix is ill-conditioned, then one
can instead invert another submatrix which cannot be ill-conditioned as long
as A is well conditioned. However, it is difficult to quantify when this form
of “pivoting” should be used, and there is no way to improve the accuracy of
the method for submatrices with medium-size condition numbers. On the
other hand, our stabilization technique can be applied to any submatrix,
even (in principle) well-conditioned ones.

Bailey & Ferguson also suggest the use of Newton iteration to improve
the accuracy of the computed inverses of the sub-blocks at each level of
recursion and, optionally, of the overall computed inverse. At this point, it
is not clear which approach is more efficient: to refine A1 before computing
the solution, or to compute & = A~1b and refine this vector.

1.5 Organization of the Report

The key new results in the present paper, compared to [5], are the following:
1. A refined forward error analysis.
2. A better understanding of how to choose the amount of stabilization.
3. Results from implementing the algorithm on a CM-200.

Our paper is organized as follows. In Section 2 we summarize Strassen’s
matrix inversion algorithm and discuss some issues related to data layout.
In Section 3 we apply standard forward error analysis to the algorithm, and
we compare with numerical tests. Next, in Section 4 we propose a method

for stabilization of Strassen’s algorithm, and in Section 5 we present some
results obtained on a CM—-200. Finally, in Section 6 we mention some open
problems and we point to future research.

2 Strassen’s Matrix Inversion Algorithm and Data
Layout

In this section we summarize Strassen’s asymptotically fast algorithm for
matrix inversion, and we discuss some issues related to data layout.

2.1 The Algorithm

Throughout, for convenience we assume that the matrix A is n x n where
n is a power of 2, and that we split A and its inverse into four square
submatrices of order m/2. Strassen’s algorithm is based on the following
well-known formula for the inverse of

A A12>
A= . 2.1
<A21 Az (2.1)

The inverse C = A~! is given by

(CH 012) _ (Al‘ll + A A ST Ay AT —Al_llAuSl) (2.2)
Cy1 Coyo —S_1A21A1_11 St ’ ’

where S is the Schur complement of Ay1, defined as
S = Agy — A21A1_11A12. (23)

The evaluation of C' via (2.2) and (2.3) can be expressed as follows, using
intermediate matrices Rq,..., Rg:

1. R = Ay

2. Ry = AaqR;

3. Ry = RjAp

4. Ry = AsRj3

5. S = Asy— Ry

ALGORITHM MATINV 6. Rs = S1

7. Cy = Rj

8. (Cia = —R3R;

9. Cyy = —Rs5Ry
10. Rg = Ci2Rs
11. Ci1 = Ri—Rs

This algorithm is identical to Strassen’s original algorithm when the
following techniques are employed:

11 1213 14
Node 1,1 | Node 1,2~ 21 2223 24 Ay | Ap

Node 2,1 [Node 2,2 — 31 32[33 34 = Ay | A
41 42|43 44

Figure 2.1: Default layout of a 4 x 4 matrix on a 2 x 2 nodal array.

e ALGORITHM MATINV is used recursively in Steps 1 and 6 to compute
the inverses of all the submatrices, and recursion is continued down to
the 1 x 1 level.

e Strassen’s matrix multiplication algorithm is used to perform all the
matrix multiplications (Steps 2, 3, 4, 8, 9 and 10).

We shall not give the details for Strassen’s matrix-matrix multiplication
algorithm (they can be found in many references, e.g., [17], [21]), but we
recall that this algorithm requires n'°827 2807 multiplications (when full
recursion is used). Using this fact it is easy to show that the number of
multiplications used in Strassen’s inversion algorithm is

~nNn

§nlo“‘f"ﬂ — %n ~ §n2'807. (2.4)
In practical implementations, because of the overhead associated with sub-
routine calls, etc., one does not use full recursion, but instead one switches
to some other algorithm at an appropriate block size; see [17]. In the matrix
inversion algorithm, we suggest switching to computing the inverse via LU
factorization at the lowest level.

2.2 Data Layout

For massively parallel computers such as the CM—-200, CM-5 and MP-1,
it is important to take into account the layout of the data elements on the
processing nodes. Often, the default layout is not the most appropriate one.
These issues are discussed in [11] and [6].

When the ALGORITHM MATINV is implemented with Strassen’s matrix-
matrix multiplication method it requires a large number of matrix additions.
These operations can be executed quickly provided that the data are allo-
cated to the processors in the right way. We illustrate this with a simple
example using a 4 x 4 matrix. If the elements of this matrix are distributed

11 13]12 14
Node 1,1 | Node 1,2 31 33|32 34

Node 2,1 [Node 2,2 ~ 21 23[22 24
41 43 |42 44

Figure 2.2: Alternative layout of a 4 x 4 matrix on a 2 x 2 nodal array.
Now, the matrix elements residing on one processor node do not correspond
to a block of A.

on a 2 X 2 processor grid using the typical default layout, shown in Fig-
ure 2.1, then adding any two different submatrices A;; causes communica-
tion. However, if the elements are distributed to the processors as shown in
Figure 2.2 then no communication is required to add any two submatrices.
Other types of additions may require other layouts, including the default
layout; but for the submatrix additions used in ALGORITHM MATINV the
layout in Figure 2.2 is optimal. On the CM—200, the desired layout is termed
(SERIAL,SERIAL,NEWS,NEWS).

3 Forward Error Analysis

In this section we present a forward error analysis of ALGORITHM MATINV
from the previous section. Because of the recursive nature of the algorithm,
forward error analysis seems to be the only way to analyze this algorithm,
and yet still—as we shall see below—there are some open problems.

3.1 The Inherent Instability of the Method

Before carrying out the analysis, it is important to realize that the method
under consideration is inherently unstable.

To see this, note that the formulae underlying Strassen’s method can be
obtained by forming the block LU factorization

<A11 A12):(I 0> <A11 A12>
Agp Agy Apn ATl T o S)’

from which we have

0 St —A21A1_11 I/

Strassen’s formulae are obtained on multiplying out the product. This gives
the first insight into why Strassen’s method is unstable: the block LU fac-
torization on which it is based is not backward stable in general [14], so we
would expect Strassen’s method also to be unstable, even if only one level
of recursion and conventional multiplication is used.

Next, suppose A is upper triangular. Then Strassen’s formulae reduce

to -1 -1 -1
A~ = (An —An A112A22))
0 22

This is essentially Method 2B in [16], which is found not to give a small resid-
ual. The cure used in [16] is to convert one of the multiplies into a multiple
right-hand side triangular solve, so that we form, say AﬁlAlg /Agy (where
/ denotes back substitution). However, this changes Strassen’s method and
there does not seem to be an analogue of this modification for the full matrix
case.

Finally, we note that Strassen’s inversion method is not guaranteed to be

stable even for symmetric positive definite matrices, as numerical examples
in [18] show.

10

3.2 Theoretical Error Bounds

We use the standard notation in which f£(-) denotes the computed version
of the particular quantity. Moreover, we let E;, F; and G; denote the error
matrices corresponding to matrix inversion, matrix multiplication, and ma-
trix addition, respectively, in the various steps of the algorithm. Thus, for
ALGORITHM MATINV we obtain the following results.

FUAT) = AT + By
fUS) = Agy — [Ag1 (A + E1)Ap + F1) + Fo] + G1 = S + Ag,

where Ag = —A91E1 A9 — Aot F1 — F5 + G1. Under the assumption that
|S~'Ag|| < 1, we then get

FU(Ca) = fL(FUS)™H = S+ Ag,
where Ag-1 = Ey — S7'AgS™!, and
FU(Cr2) = (A7 + EN) Ao + F1)(S™! 4+ Ag1) + F3 = Cia + Ag,,

where AC12 = (—E1A12 — Fl)S_l — (AilAlg + F1A9 + Fl)AS—l + F3.
Dropping second-order terms, we get Ac,, ~ A1_11A12A571 + E1 A58 +
F1S~1. The expression for f¢(Cy;) is analogous to that for f¢(Cyz). Finally,
for C11 we get:

FU(C11) = (1 — ((Cr2 + Acy,) Ao + F)) (AL + Ey) — F5 +Go = C11 + Acy,

where Ac,, = (1-Ci2421—Acy, Aot — Fi) By — (Fy+Acy, An Al —F5+Ga ~
(1 — C12A0)E1 — (Fy + Ay, As1) A — Fs + Ga.

Next, we wish to derive upper bounds for the error matrices. To simplify
the analysis we only consider one level of recursion, assuming that the lower-
level inverses are computed via LU factorization. This suffices to illustrate
the difficulties associated with this algorithm.

Let || - || denote an appropriate matrix norm, for example the Frobenius
norm or the 2-norm (the exact choice of norm is not important). For matrix
addition, we use the error model

[X+Y - fUX +Y)| <€l X +Y],
while for matrix multiplication, we use the error model

XY = fUXY)|| < | XYl

11

The models hold for conventional multiplication with e approximately n
times the machine precision (for n x n matrices), whereas for Strassen’s
multiplication method € has to be approximately (n/ng)!822nZ times the
machine precision, where ng is the order of matrix at which the recursion
is terminated [17]. Finally, for matrix inversion we use the following error

model, which is certainly reasonable for L U factorization-based methods [16]:
X~ = fAX DI < en(X) X,

where k(A) = || X|| | XY is the condition number of A.
When we apply these relations to the error matrices F;, F; and G; used
above, we obtain the following bounds, to first order:

IEL] < er(An)[|AL]

IEa| < en(S) IS~

IR < ell A [Al

1Bl < ellAall 1AL Avll < € Aar|l |AT] | Avzll

1B < el Awll I1S7H < el AT 1 AxzlH 1571

[Fall < el|Cral || Azl

IF5] < elCra Aol AT < €l|Cuall | A2 |l 1AL

IG1ll < ellAnall + €]l Aar AT} Aral| < € (|| Aall + | Az [[A7 ([|| As2])
IGall < ell Ay |+ €llCrz Aoy AT < e (A + 1 Cuall | Az [1[4 (1)

Inserting these bounds into the expressions for the error matrices Ag, Ag-1,
Ac,, and A¢,,, and neglecting second-order terms, we obtain the following
bounds:

IAs] < e(m(An) (| Al AT | Aw2]l + [[A2]]) (3.1)
1A=l < en(S)ISTH + [AslHIS™H7 :
1Ac,ll < (Zer(Awn) [STH + 1Ag-1 1) | AT | Arz] (3.3)
1Acy [l < ern(An) [AG (1 +]|Crz]l Az ll) +

1Acy | A2l [AT. (3.4)
To get a better understanding of these bounds, in particular when ill-

conditioning of submatrices is involved, we now make a few simplifying
assumptions, namely:

12

e The matrix A is well conditioned.

e The norms of the submatrices of A satisfy ||A11]| =~ ||A12|| = ||A21]| =~
|Al|. (The norm ||Agg|| is not important.)

e The norms of the submatrices of C = A~1 satisfy ||Ca| = [|S7!|| ~
[Crzfl = [IC]-

e The condition number k(A11) is much greater than one.

Recall that S = Agg — A21A1_11A12. Since Aq; is ill conditioned, its inverse
must have large elements, and thus it is likely that the matrix AglAilAlg
completely dominates S (in theory, cancellation could take place and make
the elements of AglAilAlQ of the same order as Ass, but this is highly
unlikely and we ignore this possibility). Hence, we will assume that ||S|| ~
| A2y AT Aot < [|As2ll | AT | Ar2]]. Then, since S~1 is the (2,2) block of
AL

R(S) = IISIISTH < 1Azl IAT I [l Avzl A7)
~ Al AT AT AT = s(An) 5(A).

By means of these and the above bounds, and by neglecting small factors,
we then obtain the following approximate bounds for the matrix norms:

IAs] < en(An)?|A]

A1l S en(Ai)? (A)]

1Ac,ll S en(An)’K(A) (IO

1Ayl S 1Ac, Il 5(A1n) S er(An)* w(4) [C].

Unfortunately, these bounds, which are derived in a quite straightforward
manner, are not in accordance with our numerical experiments. Instead, we
find experimentally that ||Ac,, || and [|A¢,, || are approximately proportional
to x(S) and that || Ay, || is approximately proportional to x(A)2. This means
that our theoretical bounds are much too pessimistic. In the next subsection,
we present our experimental results.

The reason for the lack of success of our simple approach is that it does
not take account of the possibility of cancellation. E.g., even when Aj;
is highly ill-conditioned, Coy = S~! cannot have large elements as long
as A is well conditioned. Hence, a simple upper bound of the form, say,
|C2]l < [JATH [Aw2]l [ISTH S #(A11) ||C]| is misleading because we know
that [|Crof| < [|C].

(3.5)
(3.6)
(3.7)
(3.8)

13

file=bounds.ps,height=10.0cm

Figure 3.1: Errors in the computed inverse C' = A~! as a function of (A1),
the condition number of the submatrix Ay;. The top figure shows results
related to the errors in the submatrix C71, while the middle and bottom
figures show results related to the errors in C1s and Ca, respectively. There
are ten circles corresponding to 10 experiments. Within each figure, the
circles represent measured values of ||C;; — Cij|| for three values of #(A1):
10? (bottom of figure), 10° (middle of figure), and 107 (top of figure). Also in
each figure, the crosses represent the experimental error bounds mentioned
in the text. The condition number of A varies between 10? and 104, with
mean value 1.6 - 103, and with no apparent correlation to x(A11).

3.3 Experimental Error Bounds

We have not been able to derive better theoretical bounds. Instead, we
present numerical results from which we will derive experimental bounds for
the errors in the computed inverse.

The results are shown in Figure 3.1; see the caption for detailed infor-
mation. The matrix was generated randomly in such a way that it has
an ill-conditioned submatrix A;; with a geometric distribution of singular
values. The order of A is n = 64.

In Figure 3.1, the measured errors are shown as circles. We see that
the errors in the submatrices C'15 and Csyo are of the same size and both
proportional to x(S) (or x(S)), while the errors in the submatrix Cj; are
clearly proportional to £(S)? (or x(A11)?). We found that x(S) was always
larger than x(A;;1) and that the following upper bounds—which are shown
as crosses in Figure 3.1—are acceptable upper bounds:

1Ag] < ur(S)[IS7Y (3.9)
[Acy, [l < uk(S)|[Cra (3.10)
HACH” < U-H(AH)QHCUH‘ (3.11)

Here, u is the machine precision.

Notice that if we insert the first two relations into the theoretical bound
for ||Acy, ||, and if we assume that € k(A1) < k(A), then we obtain [|Acy, || S
e k(A11) k(S) ||C]|. However, this is still not in accordance with our obser-
vations. Hence, all three experimental bounds above are necessary. We do
not know whether these assumptions always hold, or whether worse bounds

14

file=residual.ps,height=10.0cm

Figure 3.2: The size of the submatrices in the residual matrix R = I—A~! A.
The top, middle and bottom figures show the norms || R11 |, || Ri2|| and || Rzl
respectively, for the same 10 experiments as before. Within each figure, the
results are computed for k(A1) = 10% (bottom), x(A11) = 10° (middle),
and k(A11) = 107 (top).

exist but haven’t turned up in our experiments. It may be of interest in the
future to apply direct search methods for matrix computations, described
in [18], to this particular problem.

From the above equations we see that the errors in C' are dominated
by the errors in Cj;. It is no surprise that k(A1) plays a key role here.
However, neither the theoretical analysis nor the experimental one makes
it clear whether x(A), the condition number of the original matrix, should
also appear.

We want to mention that Strassen’s method for computing A~! breaks
completely down when the condition number of the submatrix A;; exceeds
u /2,

It is also interesting to consider the residual matrix R = I — A1 A,
Results for the same 10 test matrices as used above are shown in Figure 3.2.
We see that [|Ra2]|, the norm of the (2,2) submatrix of R, is of the same
order as ||Acy, || and ||Ac,, ||, while both ||R12|| and ||Ry1|| are of the order
|Acy, || This is no surprise, since we have the relation

R _ (An A12> <AC’11 Acm)
A21 A22 AC’zl ACQQ

from which we conclude that both Ri; and R;5 are dominated by A¢,, while
Rg2 must be of the same size as A¢,, and Ac,,.

15

4 Stabilization of the Algorithm

In this section we describe our approach to stabilization of the recursive
inversion algorithm. As we have seen in the previous section, instability is
associated with inversion of ill-conditioned submatrices A7 and S at any
level of the algorithm. In our algorithm, an ill-conditioned submatrix is very
easy to detect, since the inverse is explicitly computed, and we can measure
the ill-conditioning simply by computing an appropriate norm of the inverse
matrix (for example, the element of largest absolute value, which can be
found in logarithmic time on a parallel computer).

4.1 Diagonal Perturbation

If a submatrix is found to be ill-conditioned, then we add a small perturba-
tion to the submatrix and repeat the inversion process. In the very unlikely
event that the perturbed matrix is also ill-conditioned, we make a larger
perturbation and try again. We have never encountered the need to perturb
more than one in practice.

Perhaps the simplest perturbation that one can use is a diagonal pertur-
bation & I, where ¢ is a small number. This perturbation has the advantage
that it leaves a perturbed Toeplitz matrix in Toeplitz form, which is impor-
tant in connection with the Bitmead-Anderson algorithm mentioned in the
Section 1.

Hence, we are interested in the behavior of perturbations of the form
X = X+01, where X is a general ill-conditioned matrix. This perturbation
merely shifts the eigenvalues of X, but the behavior of the singular values is
much more complicated. Stewart [20] has proved that any perturbation of
a matrix is most likely to increase its smallest singular value, and this effect
is very pronounced when the matrix has a very small singular value, as in
our case. Hence, we have good reason to believe that our heuristic choice of
perturbation is indeed a practical one.

Numerical experiments support our choice; we find that the condition
of X is always much better than the condition of X. Moreover, when the
scalar J is greater than the smallest singular value of X we always find that
the smallest singular value of X is of the order 4.

16

file=Gigl.ps,height=10.0cm

Figure 4.1: The relative error |[A~' — A= /||A~"| in the computed inverse
as a function of J, for 10 test matrices. The submatrix Ay is singular, and
it is perturbed by 1.

The condition number of all test matrices is of the order 10.

4.2 The Amount of Stabilization

We can use this information to derive an expression for an adaptive choice
of 4. Again, we assume that the submatrix Ay is ill-conditioned and that
A is well conditioned. We also assume that ¢ is always chosen to be larger
than the smallest singular value of Ay, such that x(A1y) ~ 61| A].

Assume first that we use a very small perturbation. Then rounding
errors dominate the process, and we know from the empirical analysis in the
previous section that

IC = FUO) = Acy | S er(An)? O] = a2 A |C. (4.1)

Next, assume that the perturbation is so large that the perturbation error
from adding § I dominates. Obviously, a perturbation § I of A1; corresponds
to a perturbation of A of the form

(6[0)
0 0)°
Then it follows from the perturbation bound
X7 = (X +Ax) 7 S Ax] X P
that for large § we have
IC = fuc) sl (4.2)

Both expressions are confirmed by our numerical experiments.
Equating the two upper bounds in (4.1) and (4.2), we then obtain a
value of ¢ for which the two types of perturbations of the computed inverse

are balanced:
5= {elAll2/IC| = [|All e/ K(A). (4.3)

Here, we have used that x(A4) = [|A|||C]|.
The result in (4.3) is confirmed by numerical experiments. Figure 4.1
shows the relative error [[A~! — A~Y|/||A~!|| in the computed inverse as a

17

function of §, for 10 test matrices. The submatrix A is singular, and it is
perturbed by 6I. Only one level of recursion was used. There is clearly a
minimum at about 10~° which is approximately equal to the cube root of
the machine precision.

In a practical application, the norm || A|| (which should really be inter-
preted as the appropriate submatrix at any given level) is easy to estimate.
But estimating the condition number of A is a nontrivial process when no
factorization of A is available. The best we can do in connection with this
algorithm is probably either to assume some average condition number, say,
1000, or to require the user to provide an rough condition number estimate
(taking the cube root means that a very rough guess is enough).

18

file=Perf.ps,height=10.0cm

Figure 5.1: Comparison of the performance of Strassen’s matrix inversion
algorithm (shown as crosses) with p recursion levels (p = 1, 2, 3 or 4 recursion
levels) with the LU factorization in the CMSSL Library (solid line). The
figure shows execution times versus matrix order. The times for Strassen’s
method include 5 steps of iterative refinement, while the times for CMSSL
include forward- and back substitution. Also shown is the execution time
for the point algorithm when applied to the full matrix (dashed line).

5 Performance Results

In this section we present a few numerical results produced on the 8K Con-
nection Machine CM—-200 located at UNIeC. The programs were all coded
in CM Fortran, Version CMF 1.2.

5.1 Performance of Strassen’s Algorithm

At the “bottom level” of the recursive algorithm we used the point LU fac-
torization algorithm from LAPACK [1]. The matrix multiplications were
carried out using an implementation of Strassen’s matrix-matrix multiplica-
tion routine, using a CMSSL routine (Version 3.0) for matrix-matrix multi-
plication at the bottom level; see [7] for details. No stabilization was added
in these timing-tests. Both A and b consist of elements from a rectangular
distribution in the interval [—2,2].

Computation of the approximate inverse is carried out in single precision.
On the CM—200, this is advantageous because single precision computations
are twice as fast as double precision computations. On the CM-5, they
are performed with the same speed, so on this machine there is no reason to
switch to single precision. The remaining tasks are performed in double pre-
cision: # = A~1b is computed, and then 7 is refined using standard iterative
refinement. No extended precision is used in computing the residuals.

Test were carried out with various levels of recursion, and the results
are shown as the crosses in Figure 5.1. The number p at each cross is
the recursion level, meaning that the smallest block size was n/2P x n/2P.
The execution times are measured in seconds, and they include the time
for a fixed number of 5 steps of iterative improvement. We also show the
performance of the CMSSL LU factorization routine, including forward and
back substitutions.

19

For comparison, Figure 5.1 also shows the execution time of the point
algorithm from LAPACK (that was used at the bottom level of Strassen’s
algorithm) when applied to the full matrix.

We make the following remarks about the results:

e Strassen’s method is able to speed up significantly the performance of
the underlying point LU factorization algorithm.

e The performance of Strassen’s method depends greatly on the number
of recursion levels.

e The optimal number of recursions depends on the matrix order n.

The dependence of the optimal recursion level on the matrix size is not
surprising, as the overhead increases for each recursion level. The optimal
number of recursion levels is very difficult to predict a priori, since per-
formance of the algorithm depends on several factors, such as the number
of matrix-matrix multiplications and additions, and the nearest-neighbor
communication.

Regarding the first issue, we note that Strassen’s matrix-matrix multi-
plication algorithm seems to perform better on the MasPar MP—1, where
multiplication is slower than addition by a factor of three. On the Connec-
tion Machines CM-200 and CM-5, however, additions and multiplications
are performed at the same speed.

Regarding nearest-neighbor communication, the analysis in [10] shows
that a successful implementation of Strassen’s algorithm relies on fast near-
est-neighbor communication relative to the floating-point operations. If we
define vx as the time of nearest-neighbor communication divided by the time
of an average flop on computer X, then yysp_1 = 0.2 while vopr—200 = 0.4
and Yom—5 > Yom—200- Again, this shows that Strassen’s algorithms may
not be optimal on the Connection Machines.

It is interesting to note the following observation that we have made.
The amount of mere communication can actually be reduced by using the
CMSSL matrix-matrix multiplication routine throughout—mnot just at the
bottom level. But then the data must be reorganized before and after each
call to this routine, and the performance loss associated with this reshuffling
of data is greater than the gain in speed from using the high-speed CMSSL
multiplication routine.

The accuracy of the solution computed by Strassen’s method with it-
erative refinement was always of the same magnitude as that of the so-
lution computed by the CMSSL routines, and the Strassen-based solution

20

n koo(A) ‘ method levels rel. error

128 4E+3 | CMSSL E-14
Strassen 1 E-14
256 2E+4 | CMSSL E-14
Strassen 1 E-14
Strassen 2 E-14
512 2E+7 | CMSSL E-11
Strassen 1 E-11
Strassen 2 E-11
Strassen 3 E-11
1024 1E+5 CMSSL E-13
Strassen 1 E-13
Strassen 2 E-13
Strassen 3 E-13
Strassen 4 E-13
2048 3E+5 | CMSSL E-12
Strassen 1 E-12
Strassen 2 E-13
Strassen 3 E-13

Table 5.1: The relative error |29 — z|| /|| 2®**°*||oc in the computed so-
lution = as a function of problem size n for the CMSSL routine and for
Strassen’s method with p levels of recursion and iterative refinement. For
each value of n we also give the co-norm condition number of the random
matrix.

21

was never less accurate. The condition number of the random matrices
ranged from 103 to 107, and the relative error in the Strassen-based solu-
tion, [|2®Xat — z||o/||28 || oo, Was never larger than 10~!1. See Table 5.1
for details.

In spite of the fact that Strassen’s algorithm is always slower than the
CMSSL routine, our results are quite pleasing: with an implementation effort
of about one month, we are able to obtain a performance which is within
af factor of 10 of the “ultimate” performance of the CMSSL routine, which
required three man-years to be implemented. With one more month of
“tuning” of the code for Strassen’s algorithm, we may improve further on
the performance ratio.

Another important issue is that our implementation is “portable”, in
the sense that it relies only on one particular CMSSL routine, namely, the
matrix-matrix multiplication used at the bottom recursion level. Hence, it
is fairly easy to port the implementation to the CM-5, and even to other
MPP computers.

5.2 Performance of Block LU Factorization

For comparison’s sake, we want to mention here that we also implemented
a block LU factorization method using the same point LU algorithm at the
block size. This algorithm can be considered an alternative approach to
Strassen’s algorithm for improving the performance of the point algorithm.

Our results are very disappointing; we were not able to improve the
performance by more than about a factor 3. The main reason is that the
necessary BLAS routines are very slow, because they are not suited for the
data layout which is necessary for the block algorithm. See [8] for more
details.

22

6 Final Comments and Future Research

Although we are not able to perform a satisfactory error analysis of the al-
gorithm, our experiments have given us some understanding of the influence
of rounding errors. In particular, the experimental results indicate that the
rounding errors are not as harmful as may first be expected, and that with
suitable stabilization we are indeed able to produce an approximate inverse
which is good enough for iterative refinement or some CG-type method.

The performance of Strassen’s algorithm on the Connection Machines is
not as good as the carefully “hand-tuned” partitioned block L U factorization
algorithm with block cyclic layout from the CMSSL Library. The ratio is
about a factor of 10. On the other hand, our implementation time was about
one month, which should be compared with the three man-years it took to
implement the CMSSL routine.

In a continuation of this project it would be of interest to address some
of the following questions:

1. Consider Strassen’s method, as well as block LU factorization, as meth-
ods for speeding up a given point algorithm.

2. Look at the Newton-Schulz iteration at the big matrix level
3. Consider block methods in general on Connection Machines.

4. How fast can LAPACK be made to go by using tuned BLAS or making
more extensive changes?

Based upon these investigations, we would like to be able to say more about
the trade-off on massively parallel computers between performance and im-
plementation time, as discussed in Section 1.

Acknowledgement

The authors would like to thank Tony F. Chan for valuable discussions
during the work described in this report.

23

References

1]

E. Anderson, Z. Bai, C. Bischof, J. Demmel, J. Dongarra, J. Du Croz,
A. Greenbaum, S. Hammarling, A. McKenney, S. Ostrouchow & D.
Sorensen, LAPACK Users’ Guide, STAM, Philadelphia, 1992.

D. H. Bailey, Extra high speed matriz multiplication on the Cray-2,
STAM J. Sci. Stat. Comput. 9 (1988).

D. H. Bailey and H. R. P. Ferguson, A Strassen—Newton algorithm for
high-speed parallelizable matrix inversion. In Proceedings of Supercom-
puting ‘88, pages 419-424, New York, 1988. IEEE Computer Society
Press.

D. H. Bailey, K. Lee & H. D. Simon, Using Strassen’s algorithm to
accelerate the solution of linear systems, J. Supercomputing 4 (1990).

S. M. Balle & P. C. Hansen, A Strassen-type matriz inversion algorithm,
in I. Dimov (Ed.), Workshop on Parallel Algorithms, Sofia, 1992, World
Scientific, to appear.

S. M. Balle & P. C. Hansen, Block algorithms for the Connection Ma-
chines, Report UNIC-93-10, UNIeC, October 1993.

S. M. Balle, Solving linear systems on the Connection Machine, Tech-
nical Report in preparation, UNIeC, Denmark, 1993.

C. Bendtsen, “Quick” implementation of block LU algorithms on the
CM-200, Report UNIC-93-04, UNIeC, June 1993.

R. R. Bitmead & B. D. O. Anderson, Asymptotically fast solution of
Toeplitz and related systems of equation, Lin. Alg. Appl. 34 (1980),
103-116.

P. Bjgrstad, F. Manne, T. Sgrevik, & M. Vajtersic, Efficient matriz
multiplication on SIMD computers, STAM J. Matrix. Anal. Appl. 13
(1992).

J. W. Demmel, Trading off parallelism and numerical stability; en
M. S. Moonen, G. H. Golub & B. L. R. De Moor (Eds.), Linear Algebra
for Large Scale and Real-Time Applications, NATO ASI series, Vol 232,
Kluwer, Amsterdam, 1992, 49-68.

24

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. W. Demmel, M. T. Heath & H. A. Van der Vorst, Parallel numerical
linear algebra, Acta Numerica (1993), 111-197.

J. W. Demmel and N. J. Higham, Stability of block algorithms with fast
level-3 BLAS, ACM Trans. Math. Soft., 18(3):274-291, 1992.

J. W. Demmel, N. J. Higham, and R. S. Schreiber. Block LU factor-
ization, Numerical Analysis Report No. 207, University of Manchester,
England, February 1992; To appear in Journal of Numerical Linear
Algebra with Applications.

J. J. Dongarra, I. S. Duff, D. C. Sorensen & H. A. Van der Vorst, Solv-
ing Linear Systems on Vector and Shared Memory Computers, STAM,
Philadelphia, 1991.

J. J. Du Croz and N. J. Higham, Stability of methods for matriz inver-
sion, IMA Journal of Numerical Analysis, 12:1-19, 1992.

N. J. Higham, Fzploiting fast matriz multiplication within the level 3
BLAS, ACM Trans. Math. Software 16 (1990), 352-368.

N. J. Higham, Optimization by direct search in matrix computations,
SIAM J. Matrix Anal. Appl., 14(2):317-333, 1993.

W. Lichtenstein & S. L. Johnsson, Block-cyclic dense linear algebra,
Report, TMC, Boston, (1992); to appear in SIAM J. Sci. Comput.

G. W. Stewart, A note on the perturbation of singular values, Lin. Alg.
Appl. 28 (1979), 213-216.

V. Strassen, Gaussian Elimination is not optimal, Numer.Math. 13,
(1968), 354-356.

25

