Exploiting Fast Matrix Multiplication
Within the Level 3 BLAS

NICHOLAS J. HIGHAM
Cornell University

The Level 3 BLAS (BLAS3) are a set of specifications of FORTRAN 77 subprograms for carrying
out matrix multiplications and the solution of triangular systems with multiple right-hand sides.
They are intended to provide efficient and portable building blocks for linear algebra algorithms on
high-performance computers. We describe algorithms for the BLAS3 operations that are asymptoti-
cally faster than the conventional ones. These algorithms are based on Strassen’s method for fast
matrix multiplication, which is now recognized to be a practically useful technique once matrix
dimensions exceed about 100. We pay particular attention to the numerical stability of these “fast
BLAS3.” Error bounds are given and their significance is explained and illustrated with the aid of
numerical experiments. Our conclusion is that the fast BLAS3, although not as strongly stable as
conventional implementations, are stable enough to merit careful consideration in many applications.

Categories and Subject Descriptors: G.1.3 [Numerical Analysis}: Numerical Linear Algebra
General Terms: Algorithms

Additional Key Words and Phrases: Error analysis, level 3 BLAS, matrix multiplication, numerical
stability, Strassen’s algorithm, triangular systems

1. INTRODUCTION

In 1969, Strassen [24] showed how to multiply two n X n matrices with less than
4.7n"#%" arithmetic operations. Since log,7 = 2.807 < 3, his method improves
asymptotically on the standard algorithm for matrix multiplication, which re-
quires O(n®) operations.

Some have regarded Strassen’s algorithm as being of theoretical interest only
(see, for example, [21, p. 76; 23, p. 533]). However, in 1970 Brent [5] implemented
Strassen’s algorithm in Algol-W on an IBM 360/67 and concluded that in this
environment Strassen’s method (with just one level of recursion) runs faster than
the conventional method for n = 110. Furthermore, recently, Bailey [2] compared
his FORTRAN implementation of Strassen’s algorithm for the Cray-2 with the
Cray library routine for matrix multiplication and observed speed-up factors

Author’s current address: Department of Mathematics, University of Manchester, Manchester
M13 9PL, England.

Permission to copy without fee all or part of this material is granted provided that the copies are not
made or distributed for direct commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by permission of the Association
for Computing Machinery. To copy otherwise, or to republish, requires a fee and/or specific
permission.

© 1990 ACM 0098-3500/90/1200-0352 $01.50

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990, Pages 352-368.

Exploiting Fast Matrix Multiplication . 353

ranging from 1.45 for n = 128 to 2.01 for n = 2048 (although 35 percent of these
speed-ups are due to Cray-specific techniques). These empirical results of Brent
and Bailey show that Strassen’s algorithm is indeed of practical interest when n
is in the hundreds. Indicative of this interest is the inclusion in IBM’s ESSL
library [18] of routines for real and complex matrix multiplication using a variant
of Strassen’s method due to Winograd.

The exponent for matrix multiplication has been reduced several times to the
current record value of 2.376 [7], but as far as we know none of these asymptot-
ically faster algorithms is quicker than Strassen’s method for values of n for
which dense matrix multiplication is currently performed in practice (n < 10,000,
say).

In this work we show how Strassen’s algorithm can be exploited in all the
Level 3 Basic Linear Algebra Subprograms (BLLAS3). The BLAS3 [10, 11] are a
set of specifications of FORTRAN 77 subprograms for carrying out matrix-
matrix operations. They are intended to provide efficient and portable building
blocks for linear algebra algorithms on high-performance computers. One reason
for the importance of the BLLAS3 is that organizing algorithms in a block structure
(treating matrices as arrays of smaller matrices) and using calls to the high-level
BLAS3 primitives is an effective way to achieve high performance on machines
with a hierarchy of memory (such as cache memory, global memory, or vector
registers); see, for example, [8, 12, 13, 14, 22].

In Section 2 we present Strassen’s algorithm, in its most general form for
evaluating products of rectangular matrices, and we discuss practical issues
concerning its implementation. In Section 3 we summarize the BLAS3 primitives
and describe fast algorithms for the BLLAS3 operations involving symmetry and
triangularity; these algorithms are recursive and make use of Strassen’s method.
In addition to having asymptotically smaller operation counts than conventional
BLAS3 implementations, the ones we propose have much scope for paralleliza-
tion, by virtue of their divide and conquer nature.

As explained in [10]: “Although it is intended that the Level 3 BLAS be
implemented as efficiently as possible, it is essential that efficiency should not
be achieved at the cost of sacrificing numerical stability.” We therefore pay
particular attention to the stability properties of the algorithms discussed here.
Rounding error bounds are given and analyzed in Section 4, and Section 5
contains experiments designed to give further insight into the stability properties
of these “fast BLAS3.” Our conclusion is that while fast BILAS3 are not as
strongly numerically stable as conventional implementations of the BLAS3, they
are stable enough to warrant careful consideration in many applications.

2. FAST MULTIPLICATION OF RECTANGULAR MATRICES

Strassen’s method is usually presented as a way to multiply square matrices.
This is true of the original paper [24] as well as most subsequent descriptions.
An exception is the unpublished report of Brent [5], which treats the rectangular
case, and which we follow here.

To develop the general version of Strassen’s method, consider the product
C = AB, where A and B are matrices of dimensions m X n and n X p, respectively.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

354 . Nicholas J. Higham

Assume, for the moment, that m = 2, n = 2, p = 2*. Partitioning each of C, A,
and B into four equally sized blocks, the product

{cu clz] _ [Au AlzJ[Bn Bm] 1)
Coy Cy Ag; A || By Bs
can be accomplished using the following formulas:
P, = (A, + Ax)(By + By),
P, = (A3 + Ay)Biy,
P; = A, (Bys = Ba),
P, = Ay (B2 — Bn),
Ps = (A + Aj2)Bss,
Ps = (A2, — A)(By + Bya), (2.2)
P; = (A1s — As)(By + Bs),
Ch=P +P,— P + P,
Cys = P3 + P,
Co, = Py, + Py,
Cop = Py + Py — Py + Ps.

These equations are easily confirmed by substitution. Counting the additions (A)
and multiplications (M) we find that while conventional multiplication requires

mnpM + m(n — 1)pA, (2.3)

Strassen’s algorithm, using conventional multiplication at the block level,
requires

7 7 5 5 8
3 mnpM + <8 m(n — 2)p + 2 + 1 np + 1 mp)A. (2.4)
Thus, if m, n, and p are large, Strassen’s algorithm reduces the arithmetic by a
factor of about %. Since all the blocks in (2.1) have even dimensions we can use
the idea recursively on the multiplications associated with the P;. A total of ¢ =
min(i, J, k) recursions are possible, after which we have matrix multiplications
of size (277=9) x (2/-7**79), in which one of the dimensions is 1 and conventional
multiplication must be used. Overall, the number of scalar multiplications is

q
7q2i+j+k—3q — <%> 2i+j+k —_ min(m, n, p)log2(7/8)mnp‘ (25)
In the case m = n = p, this reduces to n'°&’ = n?#7--_ There does not seem to be
any simple formula for the number of additions in the general case, but it is of
the same order as the number of multiplications.
There are several ways of modifying the algorithm to handle odd dimensions.
One technique is to pad A and B with zeros to achieve even dimensions, compute

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 355

the extended product recursively, and then extract the desired product by
“unpadding.” Two ways to pad are as follows. One can extend any odd dimension
to the next even one by padding with a single row and/or column of zeros; in this
case padding may have to be done on each step of the recursion (e.g.,if m = n =
p = 2"+ 1 for some r). Or, as suggested in [24], one can pad once and for all to
make each dimension a power of 2 times ¢, for some small ¢, and then recur until
some dimension is ¢, at which point conventional multiplication is used. Finally,
there is the “chopping” approach suggested in [5]: here one temporarily drops
last rows and/or columns to achieve even dimensions, computes the product, and
then reinstates the lost information via a rank 1, 2, or 3 correction. For example,
if m, n and p are all odd, we can write

— Al a. Bl bc — A1B1 0
“‘B‘[af a][b; BH 0 o]”’

_ a. T O Albc
A= [a][b' A+ [a,TBl a,TbC]'

This last approach is the most attractive for practical computation, because it
has the lowest storage requirement and is the easiest to implement in a language
such as FORTRAN that does not allow dynamic expansion of arrays. (We
mention that in the Matlab language [20], which supports arbitrary redimension-
ing of arrays, the padding approach is trivial to implement.)

In practice, it is expedient not to recur to the level of scalars or vectors,
but to use conventional multiplication once the dimensions are so small that
any further reduction in the number of arithmetic operations is offset by an
increase in bookkeeping costs. For insight into how the cut-off level should be
determined, it is helpful to compare the number of operations in Strassen’s
algorithm with one level of recursion with that for conventional multiplication.
Assuming the dimensions are even, we have, on subtracting (2.4) from (2.3),
+mnpM + (zmnp — Zmn — Snp — Zmp)A. If we assume “M = A”, this reduces
to 3(mnp — 5(mn + np + mp))M, from which we can conclude that Strassen’s
method with one level of recursion requires less arithmetic than conventional
multiplication if mnp = 5(mn + np + mp). This suggests that a criterion of the
form “if mnp < ny(mn + np + mp)/3” is appropriate to terminate the recursions,
where n, is a machine and compiler-dependent value that must be chosen
empirically (we divide by 3 to make the test reduce to “if n < ny” when
m = n = p). In his FORTRAN implementation for square matrices on the
Cray-2, Bailey [2] found that ny, = 127 minimized the execution time. The
Strassen routines in IBM’s ESSL library allow up to four levels of recursion and
take ny = 184 or ng = 260 for real matrices (depending on the architecture)
and no, = 35 for complex matrices [18].

It is interesting to ask what value of n, minimizes the number of arithmetic
operations. We can answer this question in the case m = n = p = 2* Let n, = 2".
The number of multiplications and additions can be shown to be

M(k) = 7%778", A(k) = 472"+ 5)7F " — 6 . 4%

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

where

356 . Nicholas J. Higham

The sum M (k) + A (k) is minimized over all integers r by r = 3; interestingly,
this value is independent of k. Thus, for all n = 2* = 8, the choice n, = 8
minimizes a reasonable measure of the computational work. For n, = 8, there are
about 1.6 times more additions than multiplications when n is large; for n, = 1,
this ratio increases to around 6. Moreover, the total number of arithmetic
operations for n, = 1 is about 1.8 times that for n, = 8 when n is large; this
emphasizes that the choice of n, can have a significant impact on the efficiency
of Strassen’s method. Finally, we note the interesting statistics that the total
number of arithmetic operations for Strassen’s method with n, = 8 is smaller
than that for conventional multiplication by a factor 0.76 for n = 128 and 0.52
for n = 1024.

3. FAST ALGORITHMS FOR THE BLAS3

The BLAS3 cover four basic matrix-matrix operations.
(a) Matrix-matrix products:
C «— aAB + 8C, A€ER™", BeR"™, (Ce&R™®

(b) Rank-r and rank-2r updates of a symmetric matrix C € R™":

C «— aATA + BC, AER™,

C — aA™B + aBTA + BC, A, Be R™"
(¢) Multiplication of a matrix by a triangular matrix:

B « «TB, T € R™ ™ triangular, B € R™?,
(d) Solving a triangular system of equations with multiple right-hand sides:
B «— aT'B, T € R™™ nonsingular and triangular, B € R™*?,

This is a simplified description. The BLAS3 include variations such as C «
«ATB + BC in (a), and B « «BT " in (c). For our purposes it is sufficient to give
algorithms for (a)-(d), as the variations are handled with obvious modifications.

The general matrix product in (a) can be implemented using Strassen’s method
as described in Section 2. (Note that it may take fewer operations to compute
(aA)B or A(aB) rather than a(AB), depending on the dimensions of A and B.)

In the rest of this section we develop recursive algorithms for operations
(b)-(d). For ease of presentation, we assume that all matrix dimensions are a
power of 2. For general dimensions, one can use the chopping technique discussed
in Section 2, taking advantage of structure when forming the low-rank correction
matrix. When stating operation counts, we assume full recursion (i.e., until some
dimension is 1). In practice, one would have a cut-off threshold: once the problem
size is sufficiently small, conventional multiplication, or in the case of (d), the
substitution algorithm for triangular systems would be used.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 357

In (b) the rank-r update requires the computation of CP(4) := A”A, where
A € R™" (“CP” stands for cross product). Partitioning A into four blocks of
dimensions r/2 X n/2, we have

ATA = {ATI A%]{An Au] _ [ATIAH + AfAy AlAr + A;Azz]
AT, AL | A Aw symm. ALAL + ALAs|

A recursive algorithm to compute CP(A) is as follows:

CP(A) [CP(AH) +CP(Ay) Strass(Al, A,,) + Strass(Af, A22)]
symm. CP(A5) + CP(A2) ’ (3.1)
where Strass(A, B) denotes the use of Strassen’s method to compute AB. Thus,
the idea is to apply the algorithm recursively to the “A7A” subproducts and use
Strassen’s method on the others.
The number of multiplications required by this algorithm is

rn2<§ pulos27/8 — % M_1> + 1 rn, u =min(r, n), (3.2)
which reduces to £n'°%" + +n? when n = r. In comparison with the count (2.5)
for Strassen’s method, the dominant term in (3.2) has the same exponent but a
smaller constant: % instead of 1. Note that this improvement is not as good as
for conventional multiplication, where symmetry of the product halves the work.
We mention that S. A. Vavasis (private communication) has devised a “%nbgﬂ”
method. His method employs three calls to Strassen’s method and two recursive
calls to the method itself. Thus, compared to (3.1), it involves 5 rather than
6 recursive calls on each level, but the formulas defining the method are more
complicated, and so it uses more additions and transpositions on each level.

The rank-2r update in (b) can be handled by computing D = A7B using
Strassen’s algorithm and then forming C « aD + «D 7 + 8C.

Next we turn to the multiplication by a triangular matrix in (c), B < TB. We
can use a technique analogous to the one just discussed for computing CP(A).
Assuming T is upper triangular, we can partition T and B into four equally sized
blocks and write

Ao [Tu le][Bn Bm] _ [TuBu + Ti:By TuBi+ TmBQzJ

O T22 B21 BZZ T22B21 T22B22 ’
The idea is to use Strassen’s method on the full matrix products 7%,B,, and
T3 By,, and the same algorithm recursively on the other products. The operation
count is essentially the same as for the cross product algorithm above; just replace

n by m and r by p in (3.2).

Finally, we consider the BLAS3 operation (d). Our task is to compute X =
T7'B, where T € R™™ is triangular and B € R™?, We partition X, T, and B

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

358 . Nicholas J. Higham
into four equally sized blocks, to obtain

Ty Tw| [Bu Buw|_[Ti -TiTw.T#|Bu Bm]
O T22 21 B22 0 T2_21 21 BZZ

1By - Tw(T5B)) TH (B - Tm(T;;Bm))]

| T3 Ba: T3: Bos
_[xu Xm]
_X21 Xoo | (3.3)

where the X;; are computed by recursive applications of the same algorithm, and
the products T1,X5, and T1,X,, (involved in the computation of X;; and X,
respectively) are computed using Strassen’s algorithm. In the case B = I, this
method reduces to the matrix inversion technique described in [24]. The opera-
tion count is exactly the same as for the method described for (b), assuming that
divisions are counted as multiplications.

4. NUMERICAL STABILITY

Although Strassen’s method is well known, its numerical stability, that is, its
behavior in floating point arithmetic, is much less widely appreciated. Partly,
this is because the early error analysis of the method in [5] was not published
(Brent’s paper [6] contains some material from [5], but not the error analysis of
Strassen’s method). Miller [19] states a stability result for Strassen’s method in
general terms. His result is presented in a more specific form by Bailey in [2],
though, unfortunately, an error in the statement makes the result too strong.
Bini and Lotti [3] give an error analysis of a class of fast matrix multiplication
techniques that includes Strassen’s; when specialized to Strassen’s method, their
quite general error bound is similar to the result given below, but it has an extra
factor logyn.

It is not difficult to do an error analysis of Strassen’s method, at least in the
case m = n = p = 2*. We did an analysis before seeing [5], and arrived at almost
exactly the same result by the same route. Since [5] is not readily accessible, we
present the analysis in an appendix.

The result may be stated as follows. Let ny = 2" be the threshold beyond which
conventional multiplication is used. If u denotes the unit round-off and € denotes
the computed product C = AB from Strassen’s method, then.

logyl12
IC-cl = [(f) (ng+ 5no) — 5n]u TANIBI +O?), (4.1)
0

where | A]| = max,;|a;;| (note that this is not a consistent matrix norm since
|AB| =< ||A| || Bl is generally false). For comparison, if C = AB is computed
the usual way, then

|C=Cl=nu|A||B|+ 0@, (4.2)

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 359

where | - | denotes the operation of replacing each matrix element by its absolute
value, and (4.2) implies the (generally much weaker) bound
IC=Cl=n’u|AllBI+0w>. (4.3)

To interpret the above bounds, note first that all three fall short of the ideal
bound

|C—-C|<u|C|+0®w?, (4.4)

which says that each component of C is computed with high relative accuracy.
Nevertheless (4.2) is a strong bound—the best we can expect when we accept the
possibility of numerical cancellation. It treats each element of the error matrix
E = C — C individually, and is similar to (4.4) if |A||B| = | C]|.

The norm bounds (4.1) and (4.3) are weaker than (4.2), since they provide the
same bound for each element of E. Note also that the scaling AB — (AD)(D™'B),
where D is diagonal, leaves (4.2) unchanged but alters (4.1) and (4.3).

The bounds (4.3) and (4.1) differ only in the constant term. For Strassen’s
method, the greater the depth of recursion the bigger the constant in (4.1): if we
use just one level of recursion (n, = n/2), then the constant is 3n% + 25n, whereas
with full recursion (ny = 1), the constant is 6n'°%!2 — 5p = 6n*%% - — 5n.

To summarize, Strassen’s method has less favorable stability properties than
conventional multiplication in two respects: it satisfies a weaker error bound
(norm-wise rather than component-wise) and it has a larger constant in the
bound (how much larger depending on ry). The norm-wise bound is a consequence
of the fact that Strassen’s method adds together elements of A matrix-wide (and
similarly for B); for example, in (2.2), A;; is added to As, Ais, and A,,. This
intermingling of elements is particularly undesirable when A or B has elements
of widely differing magnitudes because then large errors can contaminate small
components of the product. This phenomenon is well illustrated by the example

=ls] 2

which is evaluated exactly in floating point arithmetic if we use conventional
multiplication. However, Strassen’s method computes

oo =21+)+ (e—€)—1~—(1+¢).

Because c,; involves subterms of order unity, the error ¢,; — ¢ will be of
order u. Thus the relative error | éss — 2 |/| 22| = O(u/e?), which is much larger
than u if € is small. This is an example where Strassen’s method does not satisfy
the bound (4.2).

Another interesting property of Strassen’s method is that it always involves
some genuine subtractions (assuming that all additions are of nonzero terms).
This is easily deduced from the formulas (2.2). As noted in [14], this makes
Strassen’s method unattractive in applications where all the elements of A
and B are nonnegative (for example, in Markov processes [15]). Here, conven-
tional multiplication yields low relative error component-wise because in (4.2)
|[A]|B| = |AB| = | C|, yet comparable accuracy cannot be guaranteed for
Strassen’s method.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

360 - Nicholas J. Higham

We mention that Winograd discovered a variant of Strassen’s method that
requires only 15 additions instead of 18 (see [1, p. 247; 4, p. 133]). However, for
this variant the error bound corresponding to (4.1) contains a larger exponent:
log,18 = 4.170 in place of log,12 = 3.585. This result is proved in [3] (in which
both error bounds have an extra factor log,n), where it is also shown that
Strassen’s method has the minimum exponent in its error bound over the set of
all fast matrix multiplication methods that are based on computation of a 2 X 2
matrix product in seven multiplications and that employ integer constants of the
form +2‘, where i is an integer (this set breaks into 26 equivalence classes).

Finally, we comment on the stability properties of the methods of Section 3.
For square matrices of dimension n, the recursive methods for the symmetric
matrix update and the triangular matrix times matrix product both satisfy the
same bound (4.1) as Strassen’s method; this is not surprising, since in both
methods nearly all the work is done by calls to Strassen’s method. The method
for solving triangular systems T'X = B satisfies the following bound, a proof of
which is given in the appendix (we make the same assumptions as for (4.1)):

TX=B+E, IE| <c(n,noull TN X +0w?,
logy12 2
n ng 23 10 , 35 143
== 2)+ =i+ - —n. 45
¢(n, 1) <n0> (11 55 n”) 1T ™ ms (4.5)

For comparison, consider the Eomputed solution X obtained using back substi-
tutions. The ith column x; of X satisfies (see, for example, [16]) (T + E;)x; = b;,
|E;| = (n+ 1)u|T]. It follows that

TX=B+F, |Fl=(+1u|T||X], (4.6)

and the latter bound implies | F|| < n(n + 1u| T| | X|. Thus, the same
comments apply as for Strassen’s method: the error bound for the fast 7X = B
solver has a weaker form than that for the conventional technique and has a
larger constant.

5. NUMERICAL EXPERIMENTS

We have carried out numerical experiments to gain insight into the bounds of
Section 4 and to explore the effect of using the fast matrix multiplication
techniques in place of conventional multiplication within one particular algo-
rithm.

All computations were performed in Matlab [20] on a Sun 3/50 workstation.
The (double precision) unit round-off uy = 27°% = 2.2 X 107", Our Matlab codes
use recursion and are quite short (under 50 lines of code for each fast BLAS3
routine). Because of the overhead of interpretation and recursion in Matlab,
these “fast” routines are in fact quite slow, and so we do not report timings.

In the first experiment we looked at the error in Strassen’s algorithm.
Let = denote conventional multiplication. For several A and B, we
computed C = A « B in double precision, and then C, = A « B and Cs =
Strass(A, B, ny) in simulated single precision (u, = 272 = 1.2 X 1077). We

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 361

define the following quantities:

) I1¢-C| . o
nC)=—F"T""""— (norm-wise relative residual),
N n*u A I B
Ay _ | & — cijl : : ;
pc(C) = max (component-wise relative residual),
i \nu(|A||B]);
. c-cC . .
en(C) = ”——” (norm-wise relative error),
ull C|l
AN | éij = ci . .
ec(C) = max -—Il— (component-wise relative error).
iJ Ug | Cij

The quantities py(C,) = 1 and pc(C,) = 1 (to within O(u,)) measure the
sharpness of the bounds (4.3) and (4.2), respectively, while pn(Cs) and pc(Cs)
indicate whether the computed Strassen product Cs satisfies these same bounds.
The quantity

ps(Cs)=M<1 dn=<n

logy12
=<1, — (n2+ 5ny) — 5n,
dau AL B n> eno

0

measures the sharpness of the residual bound (4.1) for Strassen’s method.

We present results for square A and B of dimension n = 64 in Table 1. We
tried both ny, = 32 and n, = 4, to see how the depth of recursion affects the errors.
In practical use of Strassen’s method, n and n, would be somewhat larger than
these values, but they are sufficient to give insight into the error behavior,

The matrices used are defined as follows: urand; and nrand; are random
matrices with elements from the uniform [0, 1] and normal (0, 1) distributions,
respectively. Z; is a random matrix with 2-norm condition number 10%. P is the
Pascal matrix, made up from the numbers in Pascal’s triangle; its (i, j) element
is (i +7—2)!1/[G— 17— 1)!]. In each case the same A and B were used for each
of the two n, values. The C, statistics are listed in the columns n, = 32, although
they are independent of ny.

The results display several interesting features:

—The results confirm the error bounds (4.1-4.3), since ps(Cs) = 1, pn(C,) = 1
and pc(C,) < 1 in all cases. The bounds are one or more orders of magnitude
from being equalities, and the bound (4.1) for Strassen’s method is particularly
weak,

—pn(Cs) = 1 in each case, that is, in these examples Strassen’s method satisfies
the norm bound (4.3) for conventional multiplication. The component-wise
bound (4.2) is severely violated by Strassen’s method in the Pascal matrix
example! In this example A and B are nonnegative and A has elements of
widely varying magnitude—both of these properties are unfavorable for
Strassen’s method, as noted in Section 4.

—The en(Cs) and en(C,) values show that the two multiplication techniques
gave products with similar norm-wise relative errors. The component-wise
relative errors were also similar for the first three products, being large for the

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

362 . Nicholas J. Higham

Table I. Results for Strassen’s Method; m = n = 64

(A, B): (urand;, wurand;) (nrand;, nrand,) (Z,, Zs) (P, urands)
ng: 32 4 32 4 32 4 32 4

on(Cs) 3.23e-2 8.17e-2 8.3%-3 2.94e-2 5.08e-3 1.83e-2 1.19e-2 5.14e-2
pc(Cs) 2.00e-1 1.12e0 7.85e-2 2.8le-1 9.00e-2 7.08e-1 4.11e22 1.75e34
en(Cs) 2.51e0 6.33e0 4.06e0 1.42el 3.87e0 1.3%1 1.00e0 4.35e0
ec(Cs) 1.28el 7.18el 8.50e4 4.34e4 1.65e4 1.63e5 2.63e24 1.12e36
ps(Cs) 1.46e-2 1.76e-3 7.98e-4 4.80e-5 8.45e-4 5.46e-5 2.53e-4 1.39%e-4
on(C,) 2.55e-2 7.01e-3 4.31e-3 6.89¢-3
pc(C,) 1.18e-1 5.35e-2 5.22e-2 9.37e-2
en(C,) 1.98e0 3.39¢0 3.28e0 5.83e-1
ec(C,) 7.57e0 3.27e4 7.98e3 6.00e0

second and third products, in accord with the fact that neither method satisfies
the bound (4.4).

—The error measures for Strassen’s method are in most cases bigger for n, = 4
than for ny, = 32, as the bound (4.1) “predicts.”

Next, we consider the fast triangular system solver of Section 3. We chose
n = p = 64 and solved four systems in double precision, first with the fast
algorithm, obtaining X, and then with back substitutions, obtaining Xz. We
computed the relative residuals

. I TX =Bl { (1TX-B|); }
X)= =, X) = max = ,
v) =l Tl 1 XL e =ma o AT 1 XDy

which are bounded by 1 for X= X3z, in view of (4.6). A quantity ps(Xs) measures
the weakness in the bound (4.5) and is defined analogously to ps(Cs) above. In
each case B was of the type nrand described above. T, Ty, T, and T, are the
triangular factors from the QR factorizations of random matrices with 2-norm
condition numbers 10, 10° 10%°, and 10'%, respectively. The results are given in
Table II.

The key features of the results are:

—In these tests, X satisfies the norm-wise residual bound satisfied by Xz, but
does not always satisfy the component-wise bound (4.6).

—Generally, the various bounds are far from being equalities, particularly the
bound (4.5) for Xs.

We summarize a third experiment, in which we used the fast BLAS3 within
the matrix multiplication-rich polar decomposition algorithm of [17]. This algo-
rithm employs the iteration X,.; = X + %Xk(l - XFX,), X, € R, which we
implemented as X, = X, + %Stra ss(Xy, I — CP(X})). The iteration converges
to an orthogonal U, and the symmetric positive semidefinite polar factor is given
by H = UTA, which we implemented as H = Strass(U7, A). We computed the
polar decompositions of various A of dimensions 32 and 64, with n, = 4, 8, or 16.
A natural measure of the quality of the computed polar factors U, H is their
backward error, | A — UH ||. In all cases where the iteration converged, the
backward error was of the same order of magnitude as when conventional

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 363

Table II. Results for the Fast TX = B Solver; m = p = 64

T: T1 Tz Ta T4
ko T): 10 10° 10%° 10
ne: 32 4 32 4 32 4 32 4

pn(Xs) 1.62e-3 4.3%e-3 5.19e-4 2.42e-3 5.2le-4 2.28e-3 5.37e4 2.00e-3
pc(Xs) 2.20e-2 6.38e-2 1.99e-2 1.72e0 1.52e-2 2.57e2 1.47e-2 5.80e4
ps(Xs) 596e-4 5.12e-5 4.67e-4 7.44e-5 3.86e-4 9.56e-5 5.60e-4 7.00e-5
on(Xp) 2.12e-3 9.76e-4 8.73e-4 7.62e-4
pc(Xs) 2.20e-2 1.99e-2 1.52e-2 1.47e-2

multiplication was used, namely, as small as could be expected. In several cases,
with ny = 4 or 8, the iteration failed to converge, although it had converged for
the same matrices when using conventional multiplication. This behavior can be
explained by the less accurate answers returned by the fast BLAS3. Relaxing the
convergence tolerance slightly restored convergence (in the same number of
iterations as for conventional multiplication) and still gave an acceptable back-
ward error in all cases.

Taking into account the error analysis of Section 3 and the experiments of
this section, the numerical stability properties of the fast BLAS3 may be
summarized as follows. Here, by “conventional BLAS3” we mean the BLAS3
implemented using conventional multiplication and the substitution algorithm.
The conventional BLAS3 satisfy strong component-wise bounds for the residuals
of the computed matrices. The fast BLAS3 do not satisfy any such component-
wise bounds, as simple examples show, although in specific cases component-
wise small residuals may be obtained (e.g., in most of our numerical tests). The
two BLAS3 implementations satisfy similar norm-wise bounds, but the fast
BLASS3 have larger constant terms, which increase as the cut-off threshold ng
decreases. In our tests with n < 64, the norm-wise residuals for the fast BLAS3
were never more than twice as large as those for the conventional BLAS3.

For applications in which the BLLAS3 are employed as building blocks, an
important consideration is whether it is crucial that component-wise small
residuals be achieved. LAPACK [9] makes use of the BLAS3 in its block
factorization algorithms, and it is desirable to know whether these algorithms
remain backwards stable when the fast BLAS3 are used. Specifically, are the
computed factors the true factors of a perturbed matrix where the perturbation
satisfies a norm-wise bound commensurate with the error bounds for the fast
BLAS3? In joint work with J. W. Demmel, we are investigating this question;
preliminary results show that the answer is yes for block LU factorization, and
we are currently examining other block factorizations, including those that use
block application of Householder transformations.

The potentially faster growth of errors with dimension for the fast BLAS3
than for the conventional BLAS3 may necessitate some minor algorithm retun-
ing, as in our polar decomposition example. It may also reduce the achievable
accuracy, although in practice one is unlikely to have more than a few levels of
recursion for reasons of efficiency, so the additional error growth may not be too

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

364 . Nicholas J. Higham

serious. For software developers, these issues lead to a possible dilemma: whether
to assume that fast BLAS3 may be used instead of conventional BLAS3. Catering
for both types of BLAS3 implementation would lead to difficulties in cases where
algorithm parameters need to be different for each implementation, as may be
the case when convergence tests are involved. In other cases, such as for block
factorizations, the developer may merely need to add a section in the documen-
tation identifying how statements about accuracy must be modified for the fast
BLASS3.

Overall, we conclude that the fast BLAS3 are stable enough to deserve further
investigation in a variety of applications.

Finally, we point out that while we have implemented and tested all the
algorithms described here in Matlab on a workstation, we have not implemented
the algorithms in a compiled language on a high-performance computer. This
task we leave to further work, but Bailey’s results [2] for Strassen’s method
assure us that the fast BLAS3 will yield useful speed-ups for n in the hundreds
on appropriate machines.

APPENDIX

In this appendix we give proofs of the error bounds (4.1) for Strassen’s method
and (4.5) for the fast TX = B solver. As our model for floating point arithmetic,
we take

flixopy) = (xo0py)(1+34), |6l <u, op=+,/,
flixxzy)=x(1+a)£y(1+p0), lal, 18] =y,

where u is the unit round-off. This model encompasses machines that do not use
a guard digit in addition/subtraction.

Throughout the appendix, A, B, T, and X are all n X n matrices with n = 2*,
and the fast algorithms use the threshold n, = 2". Recall that | A || = max, ;| a;|.
We use without comment the norm inequality | AB| =n|A| | B]|.

First we consider Strassen’s method. Assume that the computed product
C = AB from Strassen’s method satisfies

C=AB+E, |El=culAllBIl+0w, (A1)

where ¢, is a constant. In view of (4.3), (A.1) certainly holds for n = n,, with
¢, = n3. Our aim is to verify (A.1) inductively and, at the same time, to derive a
recurrence for the unknown constant c.

Consider C;; in (2.2), and in particular, its subterm P;. Accounting for the
errors in matrix addition, and invoking (A.1), we obtain Pl = (A + Ay +
As)(By;, + By, + Ag) + E,, where

[Asl = u(]Aul| +]Axn]),
IABISU(|B11|+IB22|),

NE | <ceiu A+ Ap+ As || | Biy + Boo + Ag || +)]0
=dculf Al | Bl + Ou?).

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 365

Hence,
b,=P +F,
IFl=@-2"" +4ce-ull A | B + O?).
Similarly,
P, = As(By — By + Ag) + E,
where

| &p| = u(|Ba| + | Bul),
IE:ll < co-rull Azo || | Bar = Bu + Ag |} + O(u?),
which gives
P,=P,+F,,
IFsll =225+ 20wl AL B + O®?).
Now,
Co=fl(P,+P,— P+ P))

where P, = P, + F, and P, = P, + F, satisfy exactly the same error bounds as
P, and P, respectively. Assuming that these four matrices are added in the order
indicated, we have

én=c11 +Acu
IACH I <u@IP | +31 P) +20 sl + 1| P2 1))
+|Fi+F,—F+ F; || + 0(u®

=26 2" ANIBI+46 - 2"+ 3c-Jul Al | Bl + Ow?)
= (46 - 2871+ 12¢,Jull A | | Bl + O(u?).

Clearly, the same bound holds for the other three || AC;; || terms. Thus, overall,
C=AB+E, IE| <(46 - 2%+ 12¢c,—1)ulA | | Bl + O(u?).
A comparison with (A.1) shows that we need to define the ¢, by
Ce=12p1 +46 - 251 k=p ¢ =47, (A.2)

where the c, value follows from (4.3). Solving this recurrence, we obtain

6" " —1
c=12%""4"+ 46 - Qk'1< 5)

logp12 logy6
n , 46n{fn
=|— +—={l— -1
(”0> "7 2 <(n0>)

n logy12
=< (—) (n2+ 5ny) — 5n,

which gives (4.1).

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

366 . Nicholas J. Higham

Next, we turn to the fast TX = B solvgr. Following the lines of the proof above,
we assume that the computed solution X satisfies

TX =B+G, Gl =deue|| T ||X|| + O0(u?). (A.3)
From (3.3), we have T4, X5, = By, so by (A.3):

T22X21 = By + Gzl,

. R (A.4)
I Gor | = dirtel] Toz | | Xoa | + O(w®) S dpae| TN X || + O ().

Also, Ty, X1, = By; — T12X5:, where the product is computed using Strassen’s
method. Thus, using (A.1) and (A.3),

T1Xn =By — TpXor + Hiy + E + A, (A.5)
where
VE| < cecrre|) Toz |l || Xox | +O0w? (error in multiplication),
IAF<u(Biull+ | TieXos + EIl) (error in subtraction),

W Hu || < dgrw] Tl | Xull + O (error in triangular solve).
We can bound | B;, || as follows, using (A.5):
IBull = | TuXu + T Xo | + O@) <28 T X || + O).
Using this in the bound for || A ||, we obtain

T11X11 =B — T12X21 + G11> (A.6)
FGull = 2%+ chey + de-Du |l TIITX || + O(u?).

Results analogous to (A.4) and (A.6) hold for X, and X,;. It is clear, then, that
we need to define d; = dx_, + cx—; + 2*. Combining this with the recursion (A.2)
for the ¢, we have y, = Wy,_, + vy—,, B = r, where

_|de _ |1 1 _ 2k
Ye = [Ck:I, W= {0 12], Vg1 = [46 . 21«—1}‘

Expanding the recurrence and picking out the first component of y,, we obtain

k—r—1
dy= elTyk = QT(Wk—r + X WjUk—l—j)- (A7)
j=0
Noting that
12/—-1
W/ = 11 ,
0 12/

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

Exploiting Fast Matrix Multiplication . 367

d, = no(ny + 1) (using (4.6)) and ¢, = n3, we can evaluate (A.7), to obtain

12k —1
11

46 k-1 6" —6 k-1
— —_— — 2 —_ r
+ 11 (2 (5) (27

n) ng 23 | 10 , 35 143
={— —+— —ng+—no———
ng 1155 °) 11" 55

dk = no(no + 1) + ()n% + (2k+l bt 2r+1)

which completes the proof of Eq. (4.5).

ACKNOWLEDGMENTS

I am grateful to Richard Manuck of the Stanford Mathematics and Computer
Science Library for providing me with a copy of [5]. Part of this work was done
during a visit to the Computer Science Department at Stanford University in
January 1989. I thank Gene Golub, Walter Murray, and Michael Saunders for
financial support and for making my stay so pleasant. Des Higham corrected an
error in (2.4) in a draft manuscript and made many helpful suggestions. Steve
Vavasis and the referees also offered helpful comments.

REFERENCES

1.

2.

10.

11.

12.

13.

AHO, A. V., HOPCROFT, J. E, AND ULLMAN, J. D. The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading, Mass., 1974.

BaiLEY, D. H. Extra high speed matrix multiplication on the Cray-2. STAM J. Sci. Stat. Comput.
9 (1988), 603-607.

. BiNI, D, AND LorTi, D. Stability of fast algorithms for matrix multiplication. Numer. Math.

36 (1980), 63-72.

. BRASSARD, G., AND BRATLEY, P. Algorithmics: Theory and Practice. Prentice-Hall, Englewood

Cliffs, N.J., 1988.

. BRENT, R. P. Algorithms for matrix multiplication. Tech. Rep. CS 157, Computer Science

Dept., Stanford Univ., Palo Alto, Calif., 1970.

. BRENT, R. P. Error analysis of algorithms for matrix multiplication and triangular decomposi-

tion using Winograd’s identity. Numer. Math. 16 (1970), 145-156.

. COPPERSMITH, D., AND WINOGRAD, S. Matrix multiplication via arithmetic progression. In

Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, 1987, 1-6.

. DAYDE, M. J., AND DUFF, 1. S. Use of level 3 BLAS in LU factorization on the Cray-2, the

ETA-10P, and the IBM 3090-200/VF. Tech. Rep. CSS 229, Computer Science and Systems Div.,
Harwell Lab., 1988.

. DEMMEL, J. W., DONGARRA, J. J., DU CRroOz, J. J., GREENBAUM, A., HAMMARLING, S. J., AND

SORENSEN, D. C. Prospectus for the development of a linear algebra library for high-
performance computers. Tech. Memor. 97. Mathematics and Computer Science Div., Argonne
National Lab., Argonne, Ill., 1987.

DONGARRA, J. J., DU Croz, J. J., DUFF, I. S., AND HAMMARLING, S. J. A set of Level 3 basic
linear algebra subprograms. ACM Trans. Math. Softw. 16 (1990), 1-17.

DONGARRA, J. J., Du CRrOZ, J. J., DUFF, I. S, AND HAMMARLING, S. J. Algorithm 679: A set of
Level 3 basic linear algebra subprograms. ACM Trans. Math. Softw. 16 (1990), 18-28.
GALLIVAN, K., JALBY, W., AND MEIER, U. The use of BLAS3 in linear algebra on a parallel
processor with a hierarchical memory. SIAM J. Sci. Stat. Comput. 8 (1987), 1079-1084.
GaLLIVAN, K., JALBY, W., MEIER, U., AND SAMEH, A. H. Impact of hierarchical memory
systems on linear algebra algorithm design. Int. J. Supercomput. Appl. 2 (1988), 12-48.

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

368 . Nicholas J. Higham

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.
24.

GoLUB, G. H., AND VAN LoaN, C. F. Matrix Computations, 2nd ed. Johns Hopkins University
Press, Baltimore, Md., 1989.

HEYMAN, D. P. Further comparisons of direct methods for computing stationary distributions
of Markov chains. SIAM J. Alg. Discrete Meth. 8 (1987), 226-232.

HicHAM, N. J. The accuracy of solutions to triangular systems. SIAM J. Numer. Anal. 26
(1989), 1252-1265.

HicHAM, N. J., AND SCHREIBER, R. S. Fast polar decomposition of an arbitrary matrix. SIAM
J. Sci. Stat. Comput. 11 (1990), 648-655.

IBM. Engineering and Scientific Subroutine Library, Guide and Reference, Release 3. 4th ed.,
Program 5668-863, 1988.

MILLER, W. Computational complexity and numerical stability. SIAM J. Comput. 4 (1975),
97-107.

MOoLER, C. B., LITTLE, J. N.,, AND BANGERT, S. Pro-Matlab User’s Guide. The MathWorks,
Inc., South Natick, Mass., 1987.

PrEss, W. H., FLANNERY, B. P., TEUKOLSKY, S. A., AND VETTERLING, W. T. Numerical
Recipes: The Art of Scientific Computing. Cambridge University Press, Cambridge, England, 1986.
SCHREIBER, R. S. Block algorithms for parallel machines. In Numerical Algorithms for Modern
Parallel Computer Architectures, M. H. Schultz, Ed., IMA Volumes In Mathematics and Its
Applications 13, Springer-Verlag, Berlin, 1988, 197-207.

SEDGEWICK, R. Algorithms. 2nd ed., Addison-Wesley, Reading, Mass., 1988.

STRASSEN, V. Gaussian elimination is not optimal. Numer. Math. 13 (1969), 354-356.

Received May 1989; revised October 1989; accepted November 1989

ACM Transactions on Mathematical Software, Vol. 16, No. 4, December 1990.

