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Abstract

J.H. Wilkinson put Gaussian elimination (GE) on a sound numerical footing
in the 1960s when he showed that with partial pivoting the method is stable
in the sense of yielding a small backward error. He also derived bounds pro-
portional to the condition number κ(A) for the forward error ‖x − x̂‖, where
x̂ is the computed solution to Ax = b. More recent work has furthered our
understanding of GE, largely through the use of componentwise rather than
normwise analysis. We survey what is known about the accuracy of GE in
both the forward and backward error senses. Particular topics include: classes
of matrix for which it is advantageous not to pivot; how to estimate or com-
pute the backward error; iterative refinement in single precision; and how to
compute efficiently a bound on the forward error.
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1 Introduction

Consider the linear system Ax = b, where A is the 7 × 7 Vandermonde matrix with
aij = ji−1 and bi = i. Using Matlab we solved this system in single precision (unit
roundoff ≈ 10−7) via both Gaussian elimination (GE) and Gaussian elimination with
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partial pivoting (GEPP), obtaining computed solutions x̂GE and x̂GEPP, respectively.
We found that

‖x− x̂GE‖∞
‖x‖∞

≈ 4× 10−8,

‖x− x̂GEPP‖∞
‖x‖∞

≈ 6× 10−3.

An alternative measure of the quality of each of these computed solutions is whether it
is the exact solution of a perturbed system (A+∆A)x = b for some small ∆A (clearly,
∆A is not unique). Using results to be described in section 2 we found that the
minimum value of ‖∆A‖∞/‖A‖∞ is approximately 3× 10−9 for both x̂GE and x̂GEPP.
However, the minimum value of maxi,j |∆aij/aij|, which measures the perturbation
componentwise relative to A, is 3 × 10−8 for x̂GE and 2 × 10−6 for x̂GEPP. If we do
one step of iterative refinement starting from x̂GEPP, entirely in single precision, we
obtain an updated solution x for which the componentwise measure of the size of ∆A
is 5× 10−8 and ‖x− x‖∞/‖x‖∞ ≈ 4× 10−5.

This example opposes the conventional wisdom that GE with partial pivoting is
preferable to GE without pivoting. It also shows that iterative refinement in single
precision can be beneficial. It is natural to ask: Can this behaviour be explained by a
priori analysis of the problem, and can the example be generalized? More generally,
what can one say about the sizes of x− x̂ and ∆A for arbitrary A and b?

Answers to these questions are contained in this survey of the accuracy of Gaussian
elimination in finite precision arithmetic. Work on this subject began in the 1940s at
around the time of the first electronic computers. It reached maturity in the 1960s,
largely due to Wilkinson’s contributions. Research done since the mid 1970s has
provided further understanding of the subject.

We begin in section 2 by discussing in detail the notion of backward error and
showing how a wide class of backward errors can be computed. In section 3 we survey
rounding error analysis for Gaussian elimination. To show that error analysis need
not be difficult we give a derivation of one of the most useful backward error bounds.
Implications of the analysis are discussed in section 4, while section 5 covers practical
computation of backward error bounds. Iterative refinement, which has attracted
renewed interest recently, is the subject of section 6. In section 7 we turn our attention
to estimation of the forward error. We offer some final thoughts in section 8, where
we show how the results presented here help to explain the numerical example above.

Our notation is as follows. Throughout, A is a real n × n matrix. Computed
quantities are denoted with a hat. Thus x̂ is a computed solution to Ax = b and L̂,
Û are computed LU factors of A.

Much of this paper is concerned with backward error analysis. This is because
there is a lot to say about the topic, not because we believe backward error analysis
is of vital importance to all users of GE software. We suspect that many users are
interested mainly in the size of x − x̂. For them the most important material is in
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section 7, and familiarity with sections 2 and 6 is recommended.

2 Backward Error

In analysing the behaviour of GE in finite precision arithmetic two types of error are
of interest. The forward error is any suitable norm of x− x̂, and is easy to appreciate.
Backward error is a more subtle concept, as we now explain.

In GE backward error is a measure of the smallest perturbations such that either

L̂Û = A+ ∆A (2.1)

if we are concerned with the LU factorization alone, or

(A+ ∆A)x̂ = b+ ∆b (2.2)

for the overall process. In (2.1) ∆A is unique and the question is how to measure its
size. In (2.2) there are many possible ∆A and ∆b, which makes determination of the
backward error nontrivial.

The usual motivation for considering backward error is that there may already be
uncertainty in the data A and b (arising from rounding errors in storing or computing
the data, for example). If the backward error and the uncertainty are of similar
magnitude then it can be argued that the computed solution x̂ is beyond reasonable
criticism. Another attractive feature of backward error analysis is that it enables one
to invoke existing perturbation theory to produce bounds for the forward error (see
section 7).

We consider two ways to measure the size of the perturbations ∆A and ∆b.

(a) Normwise Backward Error

Here we measure the perturbations using norms. We will use an arbitrary vector
norm and the corresponding subordinate matrix norm. For the LU factorization the
backward error is simply βN = ‖A− L̂Û‖/‖A‖. For x̂ it is

βN = min
{
ω : (A+ ∆A)x̂ = b+ ∆b, ‖∆A‖ ≤ ω‖A‖, ‖∆b‖ ≤ ω‖b‖,

∆A ∈ IRn×n, ∆b ∈ IRn
}
.

The following result of Rigal and Gaches [34] gives a convenient expression for βN .

Theorem 2.1

βN =
‖r‖

‖A‖ ‖x̂‖+ ‖b‖
, (2.3)

and perturbations which achieve the minimum in the definition of βN are

∆Amin =
‖A‖‖x̂‖

‖A‖ ‖x̂‖+ ‖b‖
rzT ,

∆bmin =
‖b‖

‖A‖ ‖x̂‖+ ‖b‖
r,
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where r = b− Ax̂ and z is a vector dual to x̂, that is,

zT x̂ = ‖z‖D‖x̂‖ = 1 where ‖z‖D = max
y 6=0

|zTy|
‖y‖

.

Proof. See [34, Theorem 1].

If we set ∆b = 0 in the definition of βN then the result simplifies to βN =
‖r‖/(‖A‖‖x̂‖) and ∆Amin = rzT . In the case of the 2-norm, z = x̂/‖x̂‖22 and the
result with ∆b ≡ 0 is well-known.

If A has some special property, then in the definition of βN we might wish to
prescribe that A + ∆A has the same property. In the case of symmetry, this more
restrictive backward error measure (with ∆b ≡ 0) has been investigated by Bunch,
Demmel and Van Loan [4]. They show the pleasing result that the symmetry con-
straint does not change the backward error for the 2-norm, and it increases it by at
most a factor

√
2 for the Frobenius norm.

(b) Componentwise Backward Error

This definition involves a matrix E ≥ 0 and a vector f ≥ 0 whose elements provide
relative tolerances against which the components of ∆A and ∆b are measured. For
x̂, the componentwise backward error is defined as

βC(E, f) = min
{
ω : (A+ ∆A)x̂ = b+ ∆b, |∆A| ≤ ωE, |∆b| ≤ ωf,

∆A ∈ IRn×n, ∆b ∈ IRn
}
.

The matrix absolute value and matrix inequality are interpreted componentwise: thus
|X| ≤ Y means that |xij| ≤ yij for all i, j. For the LU factorization the definition is
simply βC(E) = max{|∆aij|/eij, 1 ≤ i, j ≤ n}. Two extreme choices of E and f are
as follows.

1. E = |A|, f = |b|. In this case we measure the size of the perturbation in each ele-
ment of A or b relative to the element itself. This is the most stringent backward
error measure of general interest. Note that the constraints in the definition of
βC(|A|, |b|) force A + ∆A and b + ∆b to have the same sparsity patterns as A
and b respectively. Following [1] we call βC(|A|, |b|) the componentwise relative
backward error.

2. E = ‖A‖∞eeT , f = ‖b‖∞e, where e = (1, 1, . . . , 1)T . For this choice we are
measuring perturbations in an absolute sense (in a similar, but not identical,
way to the norm case (a)).

An expression for βC is given by Oettli and Prager [29], and we present the short
proof since it aids in understanding the result.
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Theorem 2.2

βC(E, f) = max
i

|b− Ax̂|i(
E|x̂|+ f

)
i

, (2.4)

where 0/0 is interpreted as zero, and ξ/0 (ξ 6= 0) as infinity, the latter case meaning
that no finite ω exists in the definition of βC(E, f).

Proof. For any candidate perturbations ∆A and ∆b in the definition of βC(E, f)
we have

|r| = |b− Ax̂| = |∆Ax̂−∆b| ≤ ωE|x̂|+ ωf,

which implies that

βC(E, f) ≥ max
i

|ri|(
E|x̂|+ f

)
i

≡ θ.

To show that this lower bound is attained note that

r = D(E|x̂|+ f) (2.5)

for a diagonal D with |D| ≤ θI. Defining ∆A = DE diag
(
sign(x̂)

)
and ∆b = −Df

we have |∆A| ≤ θE, |∆b| ≤ θf , and, using (2.5),

(A+ ∆A)x̂− (b+ ∆b) = Ax̂+DE|x̂| − b+Df = 0,

as required.

This result shows that βC can be computed using two matrix-vector multiplies. For
the E and f in case (2) above the formula reduces to βC = ‖r‖∞/(‖A‖∞‖x̂‖1+‖b‖∞),
which is very similar to βN for the ∞-norm.

3 Error Analysis of Gaussian Elimination

In this section we give a brief survey of rounding error analysis for Gaussian elimina-
tion. For further perspective on this topic we recommend the papers [31, 51, 52, 53]
of Wilkinson.

Unless otherwise stated, results quoted are for floating point arithmetic. We will
ignore permutations in stating backward error bounds; thus A actually denotes the
original matrix after all row or column interchanges necessary for the pivoting strategy
have been performed.

In the 1940s there were three major papers giving error analyses of GE. Hotelling
[27] presented a short forward error analysis of the LU factorization stage of GE.
Under the assumptions that |aij| ≤ 1 and |bi| ≤ 1 for all i and j, and that the
pivots are all of modulus unity, Hotelling derives a bound containing a factor 4n−1

for the error in the elements of the reduced upper triangular system. This result
led to pessimism about the practical effectiveness of GE for solving large systems of
equations. Three papers later in the same decade helped to restore confidence in GE.
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Von Neumann and Goldstine [46] gave a long and difficult fixed-point error analysis
for the inversion of a symmetric positive definite matrix A via GE. They obtained
a bound proportional to κ2(A) for the residual ‖AX̂ − I‖2 of the computed inverse

X̂. Wilkinson [51] gives an interesting critique of this paper and points out that the
residual bound could hardly be improved using modern error analysis techniques.

Turing [44] analysed GEPP for general matrices and obtained a bound for ‖x−x̂‖∞
that contains a term proportional to ‖A−1‖2∞. (By making a trivial change in the
analysis Turing’s bound can be made proportional only to ‖A−1‖∞.) Turing also
showed that the factor 4n−1 in Hotelling’s bound can be improved to 2n−1 and that
still the bound is attained only in exceptional cases.

Fox, Huskey and Wilkinson [18] presented empirical evidence in support of GE,
commenting that “in our practical experience on matrices of orders up to the twen-
tieth, some of them very ill-conditioned, the errors were in fact quite small”.

A major breakthrough in the error analysis of GE came with Wilkinson’s pioneer-
ing backward error analysis [48, 49]. Wilkinson showed that with partial or complete
pivoting the computed solution x̂ satisfies

(A+ E)x̂ = b, (3.1)

where
‖E‖∞ ≤ ρnp(n)u‖A‖∞. (3.2)

Here, p is a cubic polynomial and the growth factor ρn is defined by

ρn = ρn(A) =
maxi,j,k |a(k)ij |
maxi,j |aij|

,

where the a
(k)
ij , k = 0, 1, . . . , n−1, are the elements that occur during the elimination.

Apart from its simplicity and elegance, the main feature that distinguishes Wilkin-
son’s analysis from the earlier error analyses of GE is that it bounds the normwise
backward error rather than the forward error or the residual.

Three of the first textbooks to incorporate Wilkinson’s analysis were those of Fox
[17, pp. 161–174], Wendroff [47] and Forsythe and Moler [16, Ch. 21]. Fox gives a
simplified analysis for fixed-point arithmetic under the assumption that the growth
factor is of order 1. Forsythe and Moler give a particularly readable backward error
analysis which has been widely quoted.

Wilkinson’s 1961 result is essentially the best that can be obtained by a normwise
analysis. Subsequent work in error analysis for GE has mainly been concerned with
bounding the backward error componentwise, that is, obtaining n2 individual bounds
for the elements of the backward error matrix E, rather than a single bound for a
norm of E.

Chartres and Geuder [6] analyse the Doolittle “compact” version of GE. They
derive the componentwise backward error result

(A+ E)x̂ = b,

6



|eij| ≤ 2(j + 3)wijc1(n, u) +


2|ûij|c2(n, u), i < j,
3|ûjj|c2(n, u), i = j,

2|l̂ijûjj|c2(n, u), i > j,

(3.3)

where c1(n, u) ≈ u, c2(n, u) ≈ (n+ 1)u, and

wij =
m−1∑
k=1

|l̂ikûkj| =
(
|L̂||Û |

)
ij
− |l̂imûmj|, m = min(i, j).

We note that Wilkinson could have given a componentwise bound in place of (3.2),
since most of his analysis is at the element level.

Reid [32] shows that the assumption in Wilkinson’s analysis that partial pivoting
or complete pivoting is used is unnecessary. Without making any assumptions on the
pivoting strategy he derives the result for the LU factorization

L̂Û = A+ E,

|eij| ≤ 3.01numax
k
|a(k)ij |.

Again, this is a componentwise bound. Note that the backward error analyses dis-
cussed so far display three different “styles” of error bound, indicating the considerable
freedom one has in deciding how to develop and phrase a backward error analysis.

de Boor and Pinkus [9] give the result

(A+ E)x̂ = b, (3.4)

|E| ≤ γn(2 + γn)|L̂||Û |, (3.5)

where
γn =

nu

1− nu
.

They refer to the original 1972 German edition of [40] for a proof of the result, and
explain several advantages to be gained by working with the matrix-level bound (3.5)
(see section 4.2).

We briefly mention some other relevant work:

• Demmel [10] shows how existing backward error analyses for GE can be modified
to take into account the possibility of underflow (the analyses we have described
assume that underflow does not occur).

• Backward error analysis has been used to investigate how the accuracy and
stability of GE are affected by scaling, and by use of row pivoting instead of
column pivoting. van der Sluis [45] and Stewart [39] employ norm analysis,
while Skeel [35, 37] uses a componentwise approach.

• Specialized backward error analyses have been done for the Cholesky factoriza-
tion of positive (semi-) definite matrices; see [25] and the references therein.
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• Forward error analyses have been done for GE. The analyses are more compli-
cated and more difficult to interpret than the backward error analyses. See [30]
and [41, 42].

The “|L̂||Û |” componentwise-wise style of backward error analysis is now well-
known, as evidenced by its presence in several textbooks [8, 19, 40]. To emphasize
the simplicity of the analysis we give a short proof of (3.5). This proof is modelled
on one in [40]. See also [7] for a similar presentation.

We will use the standard model of floating point arithmetic:

fl(x op y) = (x op y)(1 + δ), |δ| ≤ u, op = +,−, ∗, /, (3.6)

where u is the unit roundoff. The low-level technical details can be confined to two
lemmas.

Lemma 3.1 If |δi| ≤ u and pi = ±1 for 1 ≤ i ≤ n, and nu < 1, then

n∏
i=1

(1 + δi)
pi = 1 + θn,

where |θn| ≤ γn ≡ nu/(1− nu).

Proof. A straightforward induction.

Lemma 3.2 If the expression s = (c −
∑k−1

i=1 aibi)/bk is evaluated in floating point
arithmetic, in whatever order, then the computed value ŝ satisfies

|c−
k−1∑
i=1

aibi − ŝbk| ≤ γk
(
|ŝbk|+

k−1∑
i=1

|ai||bi|
)
. (3.7)

Proof. Straightforward manipulation. If we assume that the expression is evaluated
in the natural left-right order then an intermediate result in the proof (and a backward
error result in its own right) is

ŝbk(1 + θk) = c−
k−1∑
i=1

aibi(1 + θi) (3.8)

where the θi satisfy |θi| ≤ γi. It is not hard to see that this inequality holds whatever
ordering is used when evaluating s if we replace each θi on the right-hand side by θk
(different in each instance).
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Recall that the GE algorithm comprises three nested loops, and that there are six
ways of ordering the loops. Each version sustains precisely the same rounding errors
under the model (3.6) because each version does the same floating point operations
with the same arguments—only the order in which the operations are done differs.
We find it convenient to analyse the Doolittle, or “jik” variant, which computes L a
column at a time and U a row at a time according to

uij = aij −
i−1∑
k=1

likukj, j ≥ i

lij = (aij −
j−1∑
k=1

likukj)/ujj, i > j

Applying Lemma 3.2 to these equations we obtain

|aij −
i∑

k=1

l̂ikûkj| ≤ γi

i∑
k=1

|l̂ikûkj|, j ≥ i,

|aij −
j∑

k=1

l̂ikûkj| ≤ γj

j∑
k=1

|l̂ikûkj|, i > j,

where we have defined l̂ii = lii ≡ 1. These inequalities may be written in matrix form
as

L̂Û = A+ E, |E| ≤ γn|L̂||Û |. (3.9)

Finally, we have to consider the forward and back substitutions, Ly = b, Ux = y.
From (3.8) we immediately obtain

(L̂+ ∆L̂)ŷ = b, ∆L̂ ≤ γn|L̂|, (3.10)

(Û + ∆Û)x̂ = ŷ, ∆Û ≤ γn|Û |. (3.11)

Thus (L̂ + ∆L̂)(Û + ∆Û)x̂ = b, and combining (3.9)–(3.11) we arrive at (3.5). (Ac-
tually, we obtain (3.5) with the ‘2’ replaced by ‘3’—a slightly more refined analysis
of the substitution stages produces the ‘2’.)

Note that if A has bandwidth k (aij = 0 for |i− j| > k) then, since L and U have
the same bandwidth, we can replace γn by γk+1 in the above analysis.

4 Interpreting the Error Analysis

In this section we interpret the backward error analyses summarized in section 3 and
look at their implications. It is instructive to make comparisons with the “ideal”
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bounds

‖E‖∞ ≤ u‖A‖∞ (small normwise backward error), (4.1)

|E| ≤ u|A| (small componentwise relative backward error), (4.2)

which hold if, for example, A+E is the rounded version of A. (Note that (4.2) implies
(4.1)).

4.1 Normwise Analysis

Wilkinson’s backward error result is usually explained as follows. The bound (3.2)
differs from the ideal bound (4.1) by having the extra factor ρnp(n). The p(n) term
is fixed, and hence is beyond our control. Also, it is “pessimistic”, since it arises
from repeated use of triangle inequalities and taking of matrix norms. Wilkinson [49,
pp. 102, 108] comments that the bound is usually not sharp even if we replace p(n) by
its square root. Therefore our attention is focussed on the size of the growth factor.

Let ρn, ρ p
n , ρcn denote the growth factors for GE with, respectively, no pivoting,

partial pivoting and complete pivoting. It is easy to see that ρn(A) can be arbitrarily
large, and so GE without pivoting is unstable in general. For partial pivoting, ρ p

n is
almost invariably small in practice (ρ p

n < 10, say) but a parametrized family of matri-
ces is known for which it achieves its maximum of 2n−1 [26]. The situation is similar
for ρcn, except that a much smaller upper bound is known, and it has been conjectured
that ρcn(A) ≤ n for real A. Recent work has shed more light on the behaviour of ρ p

n

and ρcn. Higham and Higham [26] present several families of real matrices from practi-
cal applications for which ρ p

n(A) and ρcn(A) are about n/2. These examples show that
moderately large growth factors can be achieved on non-contrived matrices. Trefethen
and Schreiber [43] develop a statistical model of the average growth factor for partial
pivoting and complete pivoting. Their model supports their empirical findings that
for various distributions of random matrices the average growth factor (normalized
by the standard deviation of the initial matrix elements) is close to n2/3 for partial
pivoting and n1/2 for complete pivoting.

For certain classes of matrix special bounds are known for the growth factor (see
[48], [50, pp. 218–220] and [38, p. 158]):

• If A is diagonally dominant by columns (|ajj| >
∑

i 6=j |aij| for all j) then ρn(A) =
ρ p
n(A) ≤ 2 (and no row interchanges are performed with partial pivoting).

• If A is tridiagonal then ρ p
n(A) ≤ 2 and if A is upper Hessenberg then ρ p

n(A) ≤ n.

• If A is symmetric positive definite then ρn(A) ≤ 1.

• If the LU factors of A have nonnegative elements then ρn(A) ≤ 1. L ≥ 0 and
U ≥ 0 is guaranteed if A is totally nonnegative, that is, if the determinant of
every submatrix of A is nonnegative.
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4.2 Componentwise Analysis

The componentwise bound (3.5) is weaker than the ideal bound (4.2) in general, but

it matches it (up to a factor n) if |L̂||Û | ≤ c|A| with c a small constant, which is true
in several cases as we now explain. We assume the use of GE without pivoting.

First, we mention the important case of triangular systems: here the compo-
nentwise relative backward error is always small, as shown by (3.10)–(3.11). The
implications of this fact are explored in detail in [24].

Next, following [9], consider totally nonnegative matrices A. For such A, the exact
LU factors have nonnegative elements, and the same is true of the computed ones if
the unit roundoff is sufficiently small. In this case we have, using (3.9),

|L̂||Û | = |L̂Û | = |A+ E| ≤ |A|+ γn|L̂||Û |,

that is,

|L̂||Û | ≤ 1

1− γn
|A|.

Hence the backward error matrix E in (3.5) satisfies

|E| ≤ γn(2 + γn)

1− γn
|A|,

that is, the componentwise relative backward error is pleasantly small. The same is
true for some important classes of tridiagonal matrix. Higham [22] shows that if A is
tridiagonal and either

• symmetric positive definite,

• an M -matrix (aij ≤ 0 for all i 6= j and A−1 ≥ 0), or

• diagonally dominant by columns or by rows,

then
(A+ E)x̂ = b, |E| ≤ f(u)|A|,

where f(u) = cu+O(u2), c being a constant of order unity.
Note that in the above examples row interchanges in the LU factorization destroy

the required matrix properties and so we lose the favourable backward error bounds.
In these cases it is advantageous not to pivot!

5 Computing Backward Error Bounds

In cases where it is not known a priori that the backward error is sufficiently small
it is desirable to obtain an a posteriori bound for it. Several authors have considered
how to compute or estimate the bounds of section 3.
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Consider first Wilkinson’s bound (3.2), in which the only “nontrivial” term is
the growth factor ρn. The growth factor can be computed by monitoring the size
of elements during the elimination, at a cost of O(n3) comparisons. This has been
regarded as rather expensive, and more efficient ways to estimate ρn have been sought.

Businger [5] describes a way to obtain an upper bound for ρn in O(n2) opera-
tions. This approach is generalized by Erisman and Reid [14] who apply the Holder
inequality to the equation

a
(k)
ij = aij −

k∑
r=1

lirurj, i, j > k,

to obtain the bound

|a(k)ij | ≤ |aij|+ ‖(li1, . . . , lik)‖p‖(u1j, . . . , ukj)‖q,
≤ max

i,j
|aij|+ max

i
‖(li1, . . . , li,i−1)‖p max

j
‖(u1j, . . . , uj−1,j)‖q, (5.1)

where p−1 + q−1 = 1. In practice, p = 1, 2,∞ are the values of interest. Barlow [2]
notes that application of the Holder inequality instead to

a
(k)
ij =

min(i,j)∑
r=k+1

lirurj

yields the sometimes sharper bound

|a(k)ij | ≤ max
i
‖L(i, :)‖p max

j
‖U(:, j)‖q,

where L(i, :) is the ith row of L and U(:, j) is the jth column of U .
It is interesting to note that in the light of experience with the bound (5.1) Reid

[33] recommends computing the growth factor explicitly in the context of sparse
matrices, arguing that the expense is justified because (5.1) can be a very weak
bound. See [13] for some empirical results on the quality of the bound.

Chartres and Geuder [6] propose computing the n2 bounds in (3.3) explicitly.

They note that since the terms l̂ikûkj which make up W are formed anyway during
the LU factorization, W can be computed in parallel with the factorization at a cost
of n3/3 additions.

Chu and George [7] observe that the∞-norm of the matrix |L̂||Û | can be computed
in O(n2) operations without forming the matrix explicitly, since

‖ |L̂||Û | ‖∞ = ‖ |L̂||Û |e ‖∞ = ‖ |L̂|(|Û |e) ‖∞.

Thus one can cheaply compute a bound on ‖E‖∞ from a componentwise backward
error bound such as (3.5).
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All the methods discussed above make use of an a priori error analysis to compute
bounds on the backward error. Because the bounds do not take into account the sta-
tistical distribution of rounding errors, and because they have somewhat pessimistic
constant terms, they cannot be expected to be very sharp. Thus it is important not
to forget that, as shown is section 2, it is straightforward to compute the backward
error itself! To obtain the backward error in the LU factorization we have to compute
L̂Û , which costs O(n3) operations. If the normwise backward error is wanted then

one could instead estimate ‖A − L̂Û‖1 in O(n2) operations using the matrix norm
estimator described in section 7. The backward error for x̂ can be computed in O(n2)
operations via just one or two matrix-vector products, from the formulas in section 2.
We discuss the effect of rounding error on this computation in section 7.

6 Iterative Refinement

What can we do if the computed solution x̂ to Ax = b does not have a small enough
backward error? The traditional answer to a slightly different question—what to
do if x̂ does not have a small enough forward error—is to use iterative refinement,
and it is usually stressed that residuals must be computed in higher precision (see,
e.g., [16]). Work by Jankowski and Woźniakowski [28] and Skeel [36] shows that
iterative refinement using single precision residuals is usually sufficient to yield a
small backward error, although it will not necessarily produce a small forward error.
Jankowski and Woźniakowski deal with normwise backward error in their analysis
and cater for arbitrary linear equation solvers. Skeel specializes to GEPP and uses
the stronger componentwise relative backward error. Skeel’s analysis and results are
intricate, but the gist may be stated simply:

If the product of cond(A−1) ≡ ‖ |A||A−1| ‖∞ and σ(A, x) ≡ maxi

(
|A||x|

)
i
/

mini

(
|A||x|

)
i

is less than (f(A, b)u)−1, where f(A, b) is typically O(n),
then after GEPP with one step of single precision iterative refinement
βC(|A|, |b|) ≤ (n+ 1)u.

Thus after just one step of iterative refinement in single precision GEPP—which is
already stable in the sense of having small normwise backward error—is much more
strongly stable: it has a small componentwise relative backward error, provided that
the problem is not too ill-conditioned (cond(A−1) is not too large) or too badly scaled
(σ(A, x) is not too large).

Arioli, Demmel and Duff [1] consider in detail the practical use of iterative re-
finement in single precision with GEPP, with an emphasis on sparse matrices. They
note that σ(A, x) can be very large for systems in which both A and b are sparse, in
which case Skeel’s result is not applicable. To circumvent this problem they change
the backward error measure from βC(|A|, |b|) to βC(|A|, f), where f is chosen in an
a posteriori way in which fi is permitted to exceed |bi|. Thus in the backward error
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definition the sparsity of A is preserved while that of b may be sacrificed in order to
make the backward error small after one or more steps of iterative refinement. See
[1] for further details, and a comprehensive suite of numerical tests. For a thorough
survey of iterative refinement in linear equations and other contexts see [3].

7 Estimating and Bounding the Forward Error

The usual way to explore the forward error ‖x−x̂‖ is by applying perturbation theory
to a backward error analysis. Corresponding to the normwise backward error result

(A+ ∆A)x̂ = b+ ∆b, ‖∆A‖ ≤ ε‖A‖, ‖∆b‖ ≤ ε‖b‖,

we have the well-known bound

‖x− x̂‖
‖x‖

≤ 2εκ(A)

1− εκ(A)

(
εκ(A) < 1

)
, (7.1)

where the condition number κ(A) = ‖A‖‖A−1‖. For the componentwise analysis

(A+ ∆A)x̂ = b+ ∆b, |∆A| ≤ ωE, |∆b| ≤ ωf,

a straightforward generalization of a result in [35, Theorem 2.1] yields

‖x− x̂‖∞
‖x‖∞

≤ ωκE,f (A, b)

1− ωκE(A)

(
ωκE(A) < 1

)
, (7.2)

where, in the notation of [1],

κE,f (A, b) ≡ ‖ |A
−1|E|x|+ |A−1|f ‖∞

‖x‖∞
,

κE(A) ≡ ‖ |A−1|E ‖∞.

Of particular interest is the condition number for the componentwise relative back-
ward error, κ|A|,|b|(A, b). This is easily seen to differ by no more than a factor 2 from,
using Skeel’s notation [35],

cond(A, x) ≡ ‖ |A
−1||A||x| ‖∞
‖x‖∞

.

The maximum value of cond(A, x) occurs for x = e and is

cond(A) ≡ ‖ |A−1||A| ‖∞.

It is an important fact that cond(A) is never bigger than κ∞(A), and it can be much
smaller. This is because cond(A, x) is independent of the row scaling of A while κ∞(A)
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is not. One implication of this row scaling independence is that cond(A) may differ
greatly from cond(AT ). Thus in the sense of componentwise perturbations Ax = b
can be much more or less ill-conditioned than ATy = c (see [24] for some specific
examples). Another implication is that (7.2) can sometimes provide a much smaller
upper bound than (7.1). Note also that the forward error depends on the right-hand
side b, and that (7.2) displays this dependency but (7.1) does not.

We note that under assumptions on the statistical distribution of the perturbations
∆A and ∆b an expression can be derived for the expected 2-norm of the forward error
[15]; this may be preferable to (7.1) and (7.2) when statistical information about ∆A
and ∆b is available.

Both bounds (7.1) and (7.2) contain a condition number involving A−1. In most
cases exact computation of the condition number would necessitate forming A−1.
To avoid this expense it is standard practice to compute an inexpensive estimate
of the condition number using a condition estimator. Various condition estimation
techniques have been developed—see [21] for a survey. The most well-known estimator
is the one used in LINPACK, which provides a lower bound for κ1(A). The method
underlying this estimator does not generalize to the estimation of κE,f (A, b). A more
versatile estimator with this capability is one developed by Hager [20] and Higham
[23]. This estimator treats the general problem of estimating ‖B‖1, where B is not
known explicitly. The estimator assumes that B is described by a “black box” that
can evaluate Bx or BTx given x. Typically, 4 or 5 such matrix-vector products are
required to produce a lower bound for ‖B‖1, and the bound is almost invariably
within a factor 3 of ‖B‖1. To estimate κ1(A) we take B = A−1, and the estimator
requires the solution of linear systems with A and AT as coefficient matrices, which is
inexpensive if an LU factorization of A is available. Arioli, Demmel and Duff [1] show
how to apply the estimator to κE,f (A, b). The problem is basically that of estimating
‖|A−1|g‖∞, where g ≥ 0. With G = diag(g1, g2, . . . , gn) the equalities

‖ |A−1|g ‖∞ = ‖ |A−1|Ge ‖∞ = ‖ |A−1G|e ‖∞ = ‖ |A−1G| ‖∞ = ‖A−1G‖∞

show that the problem reduces to estimating ‖B‖1 where B = (A−1G)T and where
Bx and BTy can be formed by solving linear systems involving AT and A respectively.

There are certain circumstances in which one can compute κE,f (A, b) exactly with
the same order of work as solving a linear system given an LU factorization of A.
Higham [22] shows that if the nonsingular matrix A is tridiagonal and nonsingular
and has an LU factorization with |L||U | = |A| then

|U−1||L−1| = |A−1|. (7.3)

Recall from section 4.2 that the condition |L||U | = |A| implies a small componentwise
relative backward error for GE; it holds when the tridiagonal matrix is symmetric
positive definite, totally nonnegative, or an M -matrix [22]. To see the significance of
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(7.3) consider a 3× 3 bidiagonal matrix and its inverse:

U =

 d1 e2
d2 e3

d3

 , U−1 =

 d−11 −e2d−11 d−12 e2e3d
−1
1 d−12 d−13

d−12 −e3d−12 d−13

d−13

 .
Clearly we have

|U−1| = M(U)−1 where M(U) =

 |d1| −|e2||d2| −|e3|
|d3|


(M(U) is called the comparison matrix for U). The relation |B−1| = M(B)−1 is true
for all bidiagonal B, so

|A−1|g = |U−1||L−1|g = M(U)−1M(L)−1g,

which may be computed by solving two bidiagonal systems. Thus for the three classes
of tridiagonal matrix mentioned above it costs only O(n) operations to compute
κE,f (A, b) given an LU factorization of A. The same technique can be used for M -
matrices in general, because A−1 ≥ 0 implies |A−1|g = A−1g.

Next we describe further details of estimating the forward error in practice. To
evaluate bounds (7.1) and (7.2) we need the backward error, or a bound for it. We
could use the backward error bounds from section 3, but as explained in section 5 it
is better to compute the backward error directly using the formulas from section 2.

A more direct approach is to use the following bound, which is so straightforward
that it is easily overlooked: from x− x̂ = A−1r, where r = b− Ax̂,

‖x− x̂‖∞ ≤ ‖ |A−1||r| ‖∞.

Note that the inequality arises solely from ignoring signs of terms in the matrix-
vector product. Assuming r is computed in single precision, the rounding errors in
its formation are accounted for by (using a variation of Lemma 3.2)

r̂ = r + ∆r, |∆r| ≤ γn+1

(
|b|+ |A||x̂|

)
.

Thus, our final practical bound, which we estimate using the norm estimator described
above, is

‖x− x̂‖∞
‖x̂‖∞

≤
‖ |A−1|

(
|r̂|+ γn+1(|b|+ |A||x̂|)

)
‖∞

‖x̂‖∞
. (7.4)

Note that the |b|+ |A||x̂| term needs to be computed anyway if we are evaluating the
componentwise relative backward error from (2.4).

Arioli, Demmel and Duff [1] found in their experiments that after iterative re-
finement (7.4) gave similar sized bounds to (7.2) with E = |A|, f = |b|, and with ω
computed a posteriori using (2.4).
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We conclude this section by noting the need for care in interpreting the forward
error. Experiments in [24] show that simply changing the order of evaluation of an
inner product in the substitution algorithm for solution of a triangular system can
change the forward error in the computed solution by orders of magnitude. This
means, for example, that it is dangerous to compare different codes or algorithms
solely in terms of observed forward errors.

8 Concluding Remarks

The work we have described falls broadly into two areas:

• normwise error analysis and iterative refinement in double precision, and

• componentwise analysis and iterative refinement in single precision.

The first area might be described as being “traditional” or “in the style of Wilkinson”,
while the second has been the subject of most of the recent research in this subject.

An indication of the success of the recent work is that LAPACK [11], the successor
to LINPACK and EISPACK that is currently under development, will incorporate it-
erative refinement in single precision with computation of the componentwise relative
backward error and estimation of κ|A|,|b|(A, b) (see [12]).

Finally, we return to the numerical example in section 1. The Vandermonde
matrix A in this example is totally nonnegative, so we know from section 4.2 that
the componentwise relative backward error must be small for GE. For GEPP there
is no such guarantee since the permuted matrix “PA” is not totally nonnegative—
as we saw, only the normwise backward error is small in this example. We have
κ∞(A) ≈ 4× 107, and cond(A, x) ≈ 2× 104 (cond(A) ≈ 9× 104). The forward errors
for the two computed solutions are consistent with the “forward error ≤ condition
number × backward error” results (7.1) and (7.2). Concerning iterative refinement
in single precision, the product cond(A−1)σ(A, x) ≈ 103u, so Skeel’s result quoted in
section 6 is not applicable. Nevertheless, the first iterate has a small componentwise
relative backward error and its forward error is consistent with the forward error
bounds.
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