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THE ACCURACY OF SOLUTIONS TO TRIANGULAR SYSTEMS*

NICHOLAS J. HIGHAM?

Abstract. Triangular systems play a fundamental role in matrix computations. It has been prominently
stated in the literature, but is perhaps not widely appreciated, that solutions to triangular systems are usually
computed to high accuracy--higher than the traditional condition numbers for linear systems suggest. This
phenomenon is investigated by use of condition numbers appropriate to the componentwise backward error
analysis of triangular systems. Results of Wilkinson are unified and extended. Among the conclusions are
that the conditioning of a triangular system depends on the right-hand side as well as the coefficient matrix;
that use of pivoting in LU, QR, and Cholesky factorisations can greatly improve the conditioning of a

resulting triangular system; and that a triangular matrix may be much more or less ill-conditioned than its
transpose.
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1. Introduction. Triangular matrices are ubiquitous in matrix computations. Their
importance is due to the fact that practically all direct methods (and many iterative
methods) for solving general linear systems involve the solution of triangular systems,
which is easily done using the standard back and forward substitution algorithms.
Since triangular systems play such a fundamental role in matrix computations, it is
desirable to understand fully their solution in floating-point arithmetic. Although other
methods have been devised for solving triangular systems [11], the substitution
algorithms are universally used, and we concentrate on these algorithms here.

The backward error analysis for solution of a triangular system is straightforward
and well known. In contrast, the behaviour of the forward error is rarely discussed.
We might assume that, as is true for general linear systems, we can obtain useful
forward error bounds and error estimates from the backward error analysis by applying
standard perturbation theory involving the matrix condition number. However, state-
ments in three classic texts in matrix computations call this assumption into question.
Wilkinson states in [21, p. 105] and makes a similar statement in [22, p. 251], "In
practice one almost invariably finds that if L is ill-conditioned, so that IILII L-1]l >> 1,
then the computed solution of Lx b (or the computed inverse) is far more accurate
than [standard norm bounds] would suggest." Likewise, Stewart [18, p. 150] explains:

The solutions of triangular systems are usually computed to high accuracy. This
fact.., cannot be proved in general, for counter examples exist. However, it is true
of many special kinds of triangular matrices and the phenomenon has been observed
in many others. The practical consequences of this fact cannot be over-emphasized.

These clear and prominent statements are supported, although not completely
explained, by analysis given by Wilkinson [20], [22]; we summarise this analysis in

2. Surprisingly, no further analysis seems to have been published, although empirical
observations of high-accuracy solutions of triangular systems are reported in [8] and
[].
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The purpose of this paper is twofold. First, in 3 we present a unified derivation
of Wilkinson’s results, extending some and phrasing all in terms of floating-point
arithmetic. The key tools are the componentwise perturbation theory and associated
condition numbers of Skeel [17]. Second, in 4 we present the results of numerical
experiments designed to confirm and illustrate the analysis, and to give further insight
into the numerical behaviour in practice.

Of course, in most applications, solving a triangular system forms just part of an
algorithm, and even if the triangular system is solved exactly, we may not be able to
draw stronger conclusions about the error properties of the overall algorithm. Neverthe-
less, it is interesting and useful to know when and why triangular systems are solved
to "high accuracy," and in precisely what sense. We can draw an analogy with [3],
where, concerning the second stage of the SVD algorithm, high-accuracy computation
of singular values of bidiagonal matrices is considered.

We stress that the analysis given here is applicable to all forms of the substitution
algorithms: the inner product ("$D0’r") and vector sum ("$AXP") orderings [4],
implemented either in the standard serial fashion or in the sophisticated parallel
versions that have recently been developed (see [10] for a survey). Fortran software
for the substitution algorithms is widely available, notably in LINPACK [4] and in
the Level 2 BLAS [5], [6].

2. Wilkinson’s analysis. In this section we summarise Wilkinson’s results on error
analysis for triangular systems.

Recall that for an n n upper triangular system Ux b the back substitution
algorithm is

fori=n,n-1,...,1

s 2. uox2
j=i+l

bi s
xi

Uii

endfor

where the empty sum is defined to be zero. The following backward error result assumes
that the algorithm is carried out in precisely the manner indicated (and similarly for
forward substitution). We stress that the backward error bound depends on the order
in which the terms in the inner product are accumulated, and on the stage at which

bi is added to the sum. However, the simple expedient of replacing the ordering-
dependent term [i-j]+2 in (2.2) below by n+l (as we shall do in. 3) makes the
result applicable to all implementations of the substitution process.

Assume that computations are carried out in a floating-point arithmetic that obeys
the model

fl(x op y) (x op y)(l + 6), I3l<-_ u, op=+,-,*,/,

where u is the unit roundoff. (In fact, the following result holds under a weaker model
encompassing machines that do not use a guard digit in addition or subtraction.)
Assume also that floating-point underflow or overflow does not occur.

THEOREM 2.1 [21, p. 100], [18, pp. 150, 408]. Let TR be a nonsingular
triangular matrix, and assume nu < O. 1. Then the computed solution to the system Tx b
satisfies
(2.) (T+)= b,
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where

(2.2) [el (1i-j[+2)cultl, <= i,j <= n,

in which c is a constant of order unity.
The theorem shows that is the exact solution of a system obtained from Tx b

by making small componentwise relative perturbations to T. Note that the zero elements
of T are not perturbed.

The usual perturbation analysis proceeds by obtaining from (2.1) the bound

I1-11< ,(T)IIEII/IITII
IIx : (T)II E II/II TII (,(T)IIEII/II TII < 1),

where the condition number (T)= IITII IIT-’It. For the 1, oo, and Frobenius norms,
(2.2) implies

E c,u TII, c, (n + 1) c,

and so we have for these norms

(2.3) IIx-ll< (K(T)c,u<I).
Ilxll -1-K(T)c,u

In [20]-[22] Wilkinson notes that the bound (2.3) is often very pessimistic, and
he shows that in certain cases much stronger forward error bounds can be derived.
We now summarise Wilkinson’s forward error results.

Let L denote an n x n lower triangular matrix. Results (1)-(3) are concerned with
computation ofX L-. denotes the computed inverse, whose ith column is obtained
by solving the system Lx e, where e is the ith column of the identity matrix. Results
(4) and (5) are concerned with solution of a single triangular system Ly b.

(1) [20, p. 322]. If L has positive diagonal elements and nonpositive off-diagonal
elements, then

Ix, 2,jl----- 3(i-j + 1)ulx,jl, 1 j n.

Thus every element of the computed inverse has a small relative error, independent
of the condition of L.

The next two results assume the use of fixed-point arithmetic with a constant scale
factor.

(2) [20, p. 323]. If Iziil Izol for all j < i, then

[x,-1 2’+’u max Ixl, j n,
k

Wilkinson comments, "Hence if we have used complete pivoting on a matrix of lower
order we are certain to get a ’comparatively good’ result when the matrix is ill-
conditioned."

(3) [20, p. 324-325]. If X satisfies Ixu]<=O]xjj] for i>j, then

Ixo ;il <-- Onu max [;r[, 1 _--< j <_-- n.
r,

The final two results assume the use of floating-point arithmetic with double-length
accumulation of inner products. Wilkinson states [22, p. 250] "For other forms of
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computation the upper bounds obtained are somewhat poorer but the same broad
features persist."

(4) [22, p. 249]. If X satisfies Ix!jl <= OIXj for i> j, then

Onu

]]y]] 1-Onu

Wilkinson notes that 0 is often of order unity when L is very ill-conditioned.
(5) [22, p. 250]. If L has positive diagonal elements and nonpositive off-diagonal

elements, and b has nonnegative elements, then

where

e,--(1%- u)’(1%-U2) i(i+l)/2- 1.

3. The forward error. Our goal in this section is to present a unified derivation of
Wilkinson’s results, phrasing them all in terms of floating-point arithmetic, and extend-
ing the results where possible.

Let ]. denote the operation of replacing each element of a vector or matrix by
its absolute value. For the following analysis we need to write the backward error
result of Theorem 2.1 in the form

(3.1a) T + E): b,

(3.1b)
where c, (n + 1)c. This represents a weakening of (2.2) for most elements of E, but,
as noted earlier, it makes the analysis valid for all implementations of the substitution
process.

Note that by partitioning (3.1) in the form (for upper triangular T)

0 T22 + E22/ 2 b2
we obtain

(T: + E::): :, IE::I r.l TI,
and the analysis below can be applied to any such subsystem to obtain bounds on the
error in 2 that are independent of ,. This can be useful if I1111>> 11211.

To analyse (3.1) we make use of relevant perturbation theory and condition
numbers of Skeel [17]. Skeel considers general square linear systems Ax--b subject
to perturbations A a + E, IEI <= elAI, and b- b + d, Idl <= elb I. For perturbations in a
alone Skeel introduces the condition number

cond (A, x) lim sup

where (A + E)(x + 6x)= b, and shows that

cond (A, x)

The maximum value of cond (A, x) is

cond (A) cond (A, e) IA-’I IAI
It is straightforward to derive from (3.1) the bound (see, for example, [17, Thm. 2.1])

(3.2)
[Ix .[[ < cond (T, x)c,u

(cond (T) CnU < ).
IIx -cond T)c,,u
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Skeel’s theory tells us that for any T, , and b, there exists an E satisfying (3.1) for
which there is approximate equality in (3.2). Thus (3.2) must be regarded as a sharp
bound in practice (unlike (2.3)), and so it is appropriate to concentrate our efforts on
assessing the size of cond (T, x).

The most important feature of cond (T, x) is that it is invariant under row scaling
of T; this follows from the relation, for D--diag (di),

(3.3) I(DT)-’IIDTI--[T-’IID-’IIDIITI- T-’I TI.
The underlying reason for this invariance is that in (3.1) a row scaling of T and b is
reflected in the bound for IEI, and thus (3.1) is essentially left unchanged by such a

scaling.
In terms of the traditional condition number (T), ill-conditioning of a triangular

matrix stems from two possible sources: variation in the size of the diagonal elements,
and rows with off-diagonal elements that are large relative to the diagonal element.
Significantly, because of the row scaling invariance, cond (T, x) is susceptible only to
the second source. An extreme example of the difference between cond (T) and (T)
is the case of diagonal matrices D: (D) can be arbitrarily large, yet cond (D)= 1.

Despite its pleasing properties, cond (T, x) can be arbitrarily large. This is illus-
trated by the upper triangular matrix

(3.4) T(o tij), tij { 1, j,

-a, <j,

for which cond (T(a), e) cond (T(a))--- 23 "-1 as a -*. Therefore we cannot assert
that all triangular systems are solved to high accuracy. Nevertheless, for any T there
is always at least one system for which high accuracy is obtained: the system Tx e
if T is upper triangular, or Tx e, if T is lower triangular. In both cases cond T, x)= 1,
and the solution comprises the computation of just a single scalar reciprocal.

To gain further insight we consider special classes of triangular matrices. In all
the results below, T is assumed to be n n and nonsingular.

LEMMA 3.1. Suppose the upper triangular matrix T satisfies
(3.5) t,] >- til for allj > i.

Then the unit upper triangular matrix W T-’lITI satisfies wj <-- U-i for all j > i.

Proof By (3.3), W=IU-IIUI, where U=D-T,D=diag(t,). U is unit upper
triangular with lul =< 1 for j > i, and it is easy to show that I( U-)0[ -<- U-i-. Thus, for
j>i,

Wij l( U-1) k I’lkj 1 + 2 k 1 2j-’. 13
k=i k=i+l

THEOREM 3.2. Under the conditions ofLemma 3.1 the computed solution to Tx b

satisfies

Ixi- il <- 2"-i+c,u max _<- n.
ji

Proof From (3.1) we have

Using Lemma 3.1, we obtain

[xi il <= c,u willful <= c,u max IjI U-i=< 2"-’+’c,u max
j=i j>=i j=i
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Lemma 3.1 shows that for matrices satisfying (3.5), cond (T) is bounded for fixed
n no matter how large K(T). The bounds for ]xi-)i] in Theorem 3.2, although large
if n is large and is small, decay exponentially with increasing imthus later components
of x are always computed to high accuracy relative to the elements already computed.

Analogues of Lemma 3.1 .and Theorem 3.2 hold for lower triangular T satisfying

(3.6) It.] >--Itol for allj < i.

Note, however, that if the upper triangular matrix T satisfies (3.5), then Tr does not
necessarily satisfy (3.6). In fact cond (Tr) can be arbitrarily large, as shown by the
example

1 1 0

T= 0 e e

0 0

2
cond (T) 5, cond Tr) 1 +-.

An important conclusion is that a triangular system Tx b can be much more or less
ill-conditioned than the system Try c, even if T satisfies (3.5).

Compared with Wilkinson’s result (2) in 2, Theorem 3.2 assumes floating-point
arithmetic and is valid for any b rather than just the unit vectors. Theorem 3.2, or its
lower triangular analogue, is applicable to:

The lower triangular matrices from Gaussian elimination with partial pivoting
or complete pivoting;

The upper triangular matrices from Gaussian elimination with complete
pivoting;

The upper triangular matrices from the Cholesky and QR decompositions with
complete pivoting and column pivoting, respectively.

Next, we consider triangular M-matrices, that is, triangular T satisfying

tii > O, tij <- 0 for all # j.

With a general triangular T there is associated an M-matrix called the comparison
matrix"

M(T) mii), mii- f j,

-I  jl, i j.

The following result shows that, among all matrices R such that Iul- ITI, R M(T)
is the one that maximises cond (R, x).

LEMMA 3.3. For any triangular T,

cond (T, x) _-< cond (M(T), x)= II(2M(T)-’ diag (]t,])- I)lxl I1 /Ilxll .

Proof. The inequality follows from IT-’I<-_M(T) -’ [131, together with ITI=
1 4(T)I. We have

IM< T)-’I IM< T)I M( T)-’(2 diag (It.I)- M(T))
2M( T)-’ diag (ltiil)- i,

which yields the equality.
From the expression for cond (M(T), x) in Lemma 3.3 it is easy to see that

cond (M(T), x) <= + 2(n 1)0(M(T)),
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where

0(T) max
IT-’I,j = cond (T).

Note that O(T) is the quantity appearing in Wilkinson’s bounds (3) and (4) of 2.
Unfortunately, it does not seem possible to obtain a useful bound for cond (T, x) in
terms of 0(T).

An interesting feature of triangular M-matrices is that they exhibit two extremes
of behaviour in the quantity cond (T, x). On the one hand, if T= M(T) has unit
diagonal then, from Lemma 3.3,

cond (T, e) cond (T)= [[2T-- Ill2

This means, for example, that the system Ux b, where x e and U T(1) in (3.4),
is about as ill-conditioned with respect to componentwise relative perturbations in U
as it is with respect to unstructured perturbations in U.

On the other hand, a triangular M-matrix system with a nonnegative right-hand
side is very well-conditioned with respect to componentwise relative perturbations,
irrespective of the size of K.

LEMMA 3.4. Suppose T= M(T) and Tx= b>=O. Then ]T-’llTllxl<=(Zn 1)]xl, and
hence cond T, x) -< 2n 1.

Proof Write T-D-U, where D=diag(t,)=>0 and U_>-0 is strictly upper
triangular. Then, using (D- U) 0,

IT-’IITI=(I-D-’U)-’D-’. (D+ U)
n-I

E (D-’U)’.(I+D-’U)
i=0

n--1 n--1

E (D-’U)’+ E (D-’
i=0 i=l

Now 0 =< b Tx (D- U)x, so Dx >=_ Ux, that is, x >= D- Ux. Hence
n--I n--1

IT-’IITIx- E (D-’U)’x+ E (D-lU)’x<=(n+n-1)x,
i=0 i=l

which gives the result, since x T-lb >-O.
From Lemma 3.4 we obtain a result similar to Wilkinson’s result (5) in 2.
THEOREM 3.5. The computed solution to the triangular system Tx b, where T

M(T) and b >= O, satisfies

Ix l <- d.ulxl / O(uZ),
where d, (2n 1)c,,.

Proof From (3.1) we have

= (T+ E)-lb (T-’ T-’ET-’ + O(u2))b,
and thus

Ix ;I c,,ul T-’I TI Ixl + O(u=),
The result follows from Lemma 3.4. [3

Triangular systems of the type in Theorem 3.5 arise in computing estimates of
]]A-]] and of the smallest singular value of A, for triangular, bidiagonal, and
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tridiagonal A [3], [12], [13]. They also occur in solving linear equations obtained from
discretisation of certain elliptic partial differential equations, such as the Poisson
equation on a rectangle, with zero boundary conditions and a positive forcing function
(these problems yield symmetric positive definite M-matrices, and the LU factors of
an M-matrix are themselves M-matrices).

4. Numerical experiments. We have carried out a variety of numerical experiments
to confirm the analysis of 3 and to gain further insight into the practical behaviour
of the forward error in solution of a triangular system.

The computations were performed in PC-Matlab [16], which uses IEEE standard
double-precision arithmetic (unit roundoff 2 -52 2.2 10-16). Three implementations
of the back and forward substitution algorithms were tested: the vector sum version,
and the inner product version with two different orderings of the terms in the inner
product. In terms of back substitution for solving an n n upper triangular system
Tx b, the three implementations are defined as follows.

VS: x= b

fori=n,n-1,...,1
Xi i/
forj= 1,...,i-1

x. x.- t.,. * x;
endfor

endfor

IPI" fori=n,n-1,. .,1
s=0
forj=i+l,. .,n

s s + tij , xj
endfor
xi bi s / ti,

endfor

IP2: fori=n,n-1,...,1
s=0
forj=n,n-1,...,i+l

s=s+to*x
endfor
x, b,- s / t.

endfor

(Each of these implementations is permissible for the triangular equation solver in the
Level 2 BLAS [6].)

Various types of triangular matrices were generated. For each T seven linear
systems Tx b were solved, defined by

xie N(O, 1), x=e,
i--1 n--i

X Og X Ol

(4.1) b, N(O, 1), b e,

b={ en
e

if T is upper triangular,
if T is lower triangular,

where a 10-5/(n-1)<7 1 and N(0, 1) denotes the normal distribution on [0, 1]. Each
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triangular system was solved four times: once in double precision using VS, and three
times in single precision using VS, IP1, and IP2. Since PC-Matlab does not support
single-precision arithmetic we simulated it by rounding the result of every arithmetic
operation to 23 significant bits; this gives an effective unit roundoff u 2 -23 1.2 x 10 -7.
Each triangular system was generated in double precision and rounded to single
precision before being solved.

For each single-precision solution we computed the scaled componentwise and
normwise relative errors

(4.2) E,. max E,,

where for x we took the double-precision solution. Note that the relative errors are
divided by u; thus values of order for E.(E,,) correspond to all components of
(the largest component of ) having all significant digits correct.

In our experiments very many of the triangular systems were indeed solved to
high accuracy, Ec and En frequently being less than 100. The selected results reported
below are not necessarily typical; although they do contain examples of high-accuracy
solutions, they have been carefully chosen to illustrate extremes of numerical behaviour.

First we consider in detail an interesting example from [22, p. 233]. R is the
Cholesky factor of 1.8144xA, where A is the (1:5,2:6) submatrix of the Hilbert
matrix. To the significant figures quoted,

9.5247 E-1 6.3498 E-1 4.7624E-1 3.8099 E-1 3.1749 E-1
0 2.2450E-1 2.6940E-1 2.6940E-1 2.5657E-1
0 0 5.4991E-2 9.4270E-2 1.1784E-1

0 0 0 1.3607E-2 3.0237E-2
0 0 0 0 3.3806 E- 3

cond (R) 1.36 E 1, K(R) 2.02 E3,

cond (R r)= 1.24 E3, K(Rr)= 1.52 E3.

R does not satisfy (3.5) and is not an M-matrix. The values for cond show that the
system Rx b is always well-conditioned with respect to componentwise relative
perturbations in R, whereas Rrx b is, for some b, moderately ill-conditioned in the
same sense. (The contrast in the conditioning in this example is noted also in [7, p. 264]
and [22, p. 250].) Selected numerical results are displayed in Tables 4.1 and 4.2.

We offer the following comments on the results.
(1) For each solution method the normwise error is mostly predicted correctly,

to within about an order of magnitude, by (3.2), and is significantly overestimated in
the case of Rx b by (2.3).

TABLE 4.1
Rx= b.

cond (R,x) E,, (VS) E,, (VS) E,,(IP1) E,, (IP1) E,,(IP2) E,, (IP2)

xi ce ’’-i 7.82 E0 1.75 E3 3.12 E-2 6.87 E4 7.91 E- 8.92 E4 1.44 E0
x o i- 1.08 E0 1.06 E0 7.93 E- 2 1.06 E0 7.93 E- 2 1.06 E0 7.93 E- 2
x e 1.36 E1 3.45 E0 3.45 E0 4.44 E0 4.44 E0 4.44 E0 4.44 E0



TRIANGULAR SYSTEMS 1261

TABLE 4.2
Rrx=b.

cond(Rr, x). E. (VS) E,, (VS) E.(IP1) E,,(IP1) E,.(IP2) E,,(IP2)

xi a ’’-i 2.48 E0 2.00 E0 2.44 E- 5.44 E- 2.44 E- 2.00 E0 7.56 E-
xi a i-1 7.04 E2 3.94 E5 1.25 E0 3.84 E7 1.21 E2 3.84 E7 1.21 E2

xi N(0, 1) 3.83 E2 4.86 E1 4.86 E1 1.44 E1 1.44 E1 1.05 E2 1.05 E2
x e 1.24 E3 6.69 E1 6.69 E1 1.55 E2 1.55 E2 1.41 E2 1.41 E2

(2) The errors En(VS), En(IP1), and E,(IP2) vary significantly relative to one
another. For example, in Table 4.2, En(IP1) 100 En(VS) for the second x, while
En(IP1) E,(VS) for the third x.

(3) The results for xi c "-i in Table 4.1 and for xi a i-’ in Table 4.2 indicate
that "graded" solution vectors x, whose components decay steadily in absolute value
in the order in which they are computed, are a bad case as regards obtaining high
componentwise relative accuracy. Intuitively this is to be expected, since the small
components are obtained as linear combinations of.the larger ones, and so severe
cancellation is likely to occur.

Next we consider Cholesky factors of the Pascal matrix P,5, where the symmetric
positive definite n x n matrix Pn (Pij) is defined by Pi, Pi - 1, PC

UT U) andPi.j- + Pi-l,j(i, j > 1) Let U be the Cholesky factor without pivoting (P,5
let Up be the Cholesky factor with complete pivoting (II 7-p5ii Upr Up). We have

cond (U)= 1.58 E6,

cond (Up) 2.25 E 1,

cond (M(U)) 2.24 El3,

cond (M(Up)) =9.47 El,

(U) 4.14 E7,

Up)= 5.13 E7,

oo(M(U)) 7.21 El6,

oo(M( Up)) 8.47 E8.

Note the dramatic reduction in cond (U) brought about by pivoting (Lemma 3.1 yields
the bound cond (Up)=<25-1 =32767); o(U) is almost unchanged, since 2(U)=
( U, ,(P,s)i/2.

Selected results are given in Tables 4.3-4.5. Notable features are as follows.
Table 4.3 illustrates how the conditioning, and the achieved accuracy, can vary

greatly with the right-hand side.

TABLE 4.3
Ux b.

cond (U, x) E,.(VS) E,,(VS) E,.(IP1) E,,(IP1) E,.(IP2) E,,(IP2)

xi a i- 3.93 E1 4.10 E2 8.92 E0 8.93 E2 5.31 E0 1.70 E3 1.13 E1
x e 1.49 E6 2.02 E4 1.82 E4 1.04 E5 9.31 E4 4.74 E5 4.30 E5

TABLE 4.4

U,,x b.

cond (Uv, x E,.(VS) E,,(VS) E,.(IP1) E,,(IP1) E,.(IP2) E,,(IP2)

b e 1.11 E1 1.19 E4 4.83 E0 4.86 E3 8.72 E- 1.19 E4 4.83 E0
x e 2.25 E0 9.40 E0 9.40 E0 5.85 E0 5.85 E0 6.27 E0 6.27 E0
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TABLE 4.5
M(U)x=b.

cond (M( U),x) E,.(VS) E,,(VS) E,.(IP1) E,,(IP1) E,.(IP2) E,,(IP2)

X Og
n--i 4.82 E7 4.70 E4 3.05 E4 3.24 E6 2.08 E6 3.84 E6 2.48 E6

b e 2.16 E1 2.21 E0 2.21 E0 1.99 E0 1.42 E0 2.21 E0 2.21 E0
b e,, 2.16 E0 1.38 E0 9.35 E- 4.17 E0 2.35 E0 1.38 E0 9.35 E

Table 4.4 shows that the componentwise relative error can be quite large even
when the upper triangular matrix T satisfies (3.5) and cond (T, x) is small.

The entries for b e and x e in Table 4.5 illustrate well the behaviour predicted
by Lemma 3.4 and Theorem 3.5.

Finally we report on an experiment in which random 10 x 10 symmetric positive
definite matrices A VTAV were formed, where V denotes a random orthogonal
matrix constructed by the method of [19], and A =diag (Ai) with the eigenvalues from
the exponential distribution Ai =/3 or the sharp-break distribution A1 /9--1
A10 =/3. The Cholesky decomposition of A was computed both with and without
pivoting, yielding triangular factors G and Gp, respectively. Throughout,/3 was chosen
so that tc2(A) 1012, and thus K2(G)= K2(Gp) 106. The system GrGx b, that is,

Gry b, Gx y,

was solved for the first six x and b in (4.1) together with b Gre (and similarly for
Gp). A different random A was used for each different x and b. We report results for
the vector sum algorithm only. Three errors are of interest: those in the forward
substitution G-rb-fi and the back substitution G-fi-, and the overall error x-..
We report the normwise errors, denoted En(Gr), En(G), and En(x), respectively (and
defined as in (4.2)). The results, summarized in Tables 4.6-4.9, display several interesting
features.

The accuracy of the solution to the coupled triangular systems GrGx b (and
TGR Gpx b) depends very much on the right-hand side, as the En(x) values show.

TABLE 4.6
GrGx b. Exponential Ai distribution.

cond (G -r) cond (G T, y) E,,(G r) cond (G) cond (G, x) E,,(G) E,,(x)

bi N(0, 1) 8.35 E5 2.21 E2 1.50 E1 8.04 E1 4.54 E1 3.26 E0 1.44 E1
x N(0, 1) 5.20 E5 3.47 E5 1.45 E4 2.17 E2 3.94 E1 4.37 E0 4.28 E5
b Gre 7.60 E5 7.57 E5 1.39 E4 9.33 E1 2.78 E1 2.28 E0 3.97 E3

TABLE 4.7

GG;,x,, b. Exponential Ai distribution.

cond(Gir,) cond(G,,y) E,,(G,,) cond(G,,) cond(G,,,x) E,,(G,,) E,,(x)

bi6N(O, 1) 7.90 E5 1.25 E1 3.88 E0 1.17 E1 5.37 E0 8.11E-1 3.03 E0
xiN(O, 6.05 E5 1.74 E0 1.61 E0 1.05 E1 3.05 E0 5.75 E-1 1.64 E0
b Gir, e 9.50 E5 9.41 E5 3.99 E4 1.64 E1 7.67 E0 1.24 E0 3.99 E4
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TABLE 4.8
GTGx b. Sharp break A distribution.

cond(GT) cond(GT, y) E,,(GT) cond(G) cond(G,x) E,,(G) E,,(x)

bi N(0, 1) 3.55 E6 1.48 E1 1.37 E0 3.71 E0 2.94 E0 5.93 E- 1.85 E0

xi N(0, 1) 2.48 E6 6.98 E5 1.00 E5 4.55 E1 6.11 E0 6.93 E-1 8.39 E6
b GTe 3.64 E6 3.64 E6 7.67 E5 4.13 E1 9.42 E0 2.84 E0 7.68 E5

TABLE 4.9
TGp Gpx b. Sharp break A distribution.

cond(G,r,) cond(G,,r,y) E,,(G,,) cond(G,) cond(G,,,x) E,,(G,,) E,,(x)

bi N(0, 1) 3.55 E6 1.62 E1 3.78 E0 3.48 E0 2.90 E0 2.58 E- 3.88 E0

x N(0, 1) 2.38 E6 3.91 E0 1.87 E0 2.03 E0 1.54 E0 1.04 E0 2.62 E0

b G[,e 3.54 E6 3.26 E6 1.09 E6 3.99 E0 3.99 E0 9.93 E- 1.09 E6

In all cases, cond (G), cond (Gp)<< K(G)Koo(Gp) 106, emphasising once
again the possible disparity between the values of the condition numbers cond and Koo.

cond (Gr) >> cond (G) throughout (and similarly for Gp), showing even more
strikingly than in the Hilbert matrix test that a triangular matrix may be much more
ill-conditioned than its transpose. This contrast in the condition numbers is reflected
in the forward errors: in about half the examples quoted, the error in the forward
substitution greatly exceeds that in the back substitution!

Concerning the previous comment, an interesting heuristic emerged during our
experiments: in practice the upper triangular matrices T arising in LU (by Gaussian
elimination), QR, and Cholesky decompositionsmall either with or without pivotingm
tend to satisfy oo(T) cond Tr) > cond (T).

A partial explanation can be given in terms of the scaling properties of cond,
together with another heuristic, namely that any small diagonal elements of T tend to
appear towards the (n, n) position. It is tantalising to ask what is the implication of
this heuristic for the choice of normalisation in a decomposition. For example, in the
last experiment, can we avoid the effects of a large cond (G T) by employing instead
an LDLr decomposition (L unit lower triangular), where, cond (L) and cond (Lr)
will certainly be quite small? The answer is no, as the following short analysis shows.

Consider a system LDUx b, where L is lower triangular, D is diagonal, and U
is upper triangular. From Theorem 2.1 the computed solution ) satisfies

(4.3) (L+ AL)(D + AD)( U +AU)= b,

(4.4) laxl _-< c,ulxl, x- L, D, g.

After some manipulation of (4.3) we obtain

x_=(U-D-L-ALDU+ U-D-ZXDU+ U-AU)x+O(u2),
which gives, using (4.4) and ID-’IIDI-

I X[ CnU(i g-ll iD-’ IL-’ILIDI UI / RI U-’I UI)ixI / OC u2).
This bound indicates that any attempt to manipulate the normalisation to the advantage
of the forward error will, in general, be futile. For whether D is combined with L or
with U (e.g., Crout reduction or Gaussian elimination), or left separate, the dominant
term in the bound is unchanged.

Finally we mention two practical issues. First, for n x n triangular T the condition
number cond (T, x) can be estimated in O(n 2) operations, without computing T-,
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using an algorithm from [9], [14] (see [1] for the details). We stress, however, that in
most applications cond (T, x) will not be of direct interest; rather, some condition
number for the overall problem (e.g., (A) or cond (A, x) for Ax b) will be the most
appropriate quantity to examine (see [1], [13]). Second, since Theorem 2.1 shows that
the backward error in solving a triangular system is about as small as we could
reasonably expect, it is not worth doing iterative refinement in single precision for
triangular systems. In the LAPACK project, single-precision iterative refinement
routines are being supplied for all linear systems except triangular ones [2].

5. Conclusions. Triangular systems are usually solved to high accuracy, but various
contrary types of behaviour are possible within the freedom afforded by the bounds
of 3. The condition number cond (T, x) is the key to understanding and predicting
the behaviour of the forward error in the solution of a triangular system Tx b. Some
of the phenomena we have identified are as follows.

(1) The computed solution to Tx b may be highly accurate irrespective of the
size of (T).

(2) may have a small normwise relative error but a large componentwise relative
error, but in our experience this is uncommon.

(3) The accuracy of may depend very much on the right-hand side b (if cond (T)
is large). (Note that Skeel draws this conclusion in [17] for general linear systems.)

(4.) T" may be much more ill-conditioned than T, i.e., cond (T’) >> cond (T).
Points 3 and 4 do not seem to be well known. A likely reason is that in practice

such subtle behaviour is masked by the algorithm that leads to the triangular system.
For example, rounding errors in the reduction phase of Gaussian elimination tend to
dominate those for the triangular solves.

Our experiments have shown that the forward errors can vary significantly with
the implementation of a substitution algorithm: merely reordering the inner products
can change the forward error by orders of magnitude. This is not at all surprising,
since it is. well known that the forward error in a summation can be very sensitive to
the order of summation, but the fact is easily overlooked. An important implication
is that we must take extreme care when basing judgments of competing algorithms on
comparisons of their forward errors!

Our work provides some additional support for the use of pivoting in QR and
Cholesky decompositions. The value of cond (T) is usually smaller if pivoting is used
than if it is not, and consequently triangular systems may be solved more accurately
(see Lemma 3.1, Theorem 3.2, and Tables 4.3-4.4). This fact may help to explain the
empirical observation that least-squares problems tend to be solved to higher accuracy
when pivoting is used in the QR decomposition [15].

Acknowledgments. thank the referees for carefully reading the manuscript and
offering helpful suggestions.
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