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Consider the (n +1) x (n + 1) Vandermonde-like matrix P = [p,--i(o/-i)L where
the polynomials po(x),... ,pn(x) satisfy a three-term recurrence relation. We
develop algorithms for solving the primal and dual systems, Px = b and Pra =f
respectively, in O(n2) arithmetic operations and O(n) elements of storage. These
algorithms generalize those of Bjorck & Pereyra which apply to the monomial
case Pi(x) = x'. When the p,(x) are the Chebyshev polynomials, the algorithms
are shown to be numerically unstable. However, it is found empirically that the
addition of just one step of iterative refinement is, in single precision, enough to
make the algorithms numerically stable.

1. Introduction

GIVEN a set of polynomials {p,(*)}f=o> w n e r e Pi(x) has degree i, and a set of
distinct scalars a0, ... , an, one can define the matrix of order n + 1:

>o(*o) Po(*i) • • • Po(an)~

on/ \ Pl\aO) P\\aV ' ' ' Pl\an) /1 i\

P = P(a0, . . . , an)= . . . (1.1)

»n(a0) Pn(«l) • • • Pn{«n)-

and the associated linear systems

Px = b (primal), (1.2)

Pra=f (dual). (1.3)

For the monomials p,-(x) = x', the matrix P is the well-known Vandermonde
matrix; the corresponding Vandermonde systems (1.2) and (1.3) arise in a variety
of applications [1,2,11,14]. We are interested here in polynomials p, that satisfy
a three-term recurrence relation, and particularly in orthogonal polynomials. A
particular application is the solution of certain Chebyshev approximation prob-
lems [1,6], in which (1.2) and (1.3) must be solved with p, the Chebyshev
polynomial of degree i.

The standard method for solving dense systems of linear equations, Gaussian
elimination, requires O(n3) arithmetic operations and O(n2) elements of storage
when applied to (1.2) or (1.3). For the particular case of the monomials, several
authors have developed methods that solve the primal and dual Vandermonde
systems in only O(n2) operations and O(n) elements of storage [4,13]. In Section
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2 we derive algorithms which apply to the more general case where the
polynomials p, satisfy a three-term recurrence relation. These algorithms are
direct generalizations of those for the monomial case given in [4], and they inherit
the property of requiring only O(n2) operations and O(n) elements of storage.

In Section 3, we examine the numerical stability of the algorithms of Section 2.
For the Chebyshev polynomials, the algorithms are shown to be unstable in
general, although satisfactory error bounds hold for a certain class of problems.

In Section 4, we consider the use of iterative refinement in single-precision
arithmetic as a means of stabilizing the algorithms. Numerical experiments are
presented which indicate that just one step of iterative refinement is sufficient to
achieve numerical stability.

In the final section, we make recommendations concerning the use of the
algorithms of Section 2.

2. Algorithms

Let the polynomials p,(*) satisfy the three-term recurrence relation

pi+1(x) = 9j(x - f}j)Pj(x) - yjpj-rix) (j 5= 1), (2.1)

with

po(x) = 1, (2.2)

Pl(x) = 9o(x-po)po(x), (2.3)

where 0; =# 0 for all j . Assume the points or, are distinct and consider the dual
system (1.3). Defining

1=0

it follows from (1.3) that <f> is the unique polynomial of degree n that interpolates
to the values/ at the points at. Thus, solving (1.3) is equivalent to obtaining the
interpolating polynomial (j> in terms of the basis (p0, . . . ,pn). This repre-
sentation can be obtained in two stages.

Following [4] we obtain, in the first stage, the divided-difference representation
o f <f>:

n i — l

4> (•*) = Z c<II (x - ai)> Ci=f(a0, . . . ,<*, ) , (2.4)
,=0 ;=0

where the empty product is defined to be unity. The divided differences c, may be
computed using the standard scheme based on the relation [4]

, , . _ f ( < X j - k > • • • , a , ) - f j a j - k - i , . . . , g y - i )

In the second stage, the solution components a, are generated from the divided
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differences c,. Following [4], we define

qn(x) = cn,

qk(x) = (x-ak)qk+l(x) + ck (k = n - 1, n -2, . . . , 0), (2.5)

from which qo(x) = <t>(x) (see (2.4)). At this point, we depart from [4] by
expressing qk in terms of the polynomials ph rather than the monomials. Let

qk(x)=lai%Pi(x). (2.6)

To obtain recurrences for the coefficients a]k), we expand the right-hand side of
(2.5), giving n_k_1

;=0

Using the relations, from (2.1)-(2.3),

xpj(x) = j [pi+l(x) + YjP,-i(x)] + ftPiix) (j ^ 1),

we obtain, for 0 ̂  k ^ n — 2,

qk{x) = aik:M^p,{x) + /So) + " f afc^ifl" IPM*) + YJPJ-I(X)] + PjPi(x))

n-k-l

-ak X <*ik+j+iPj(x) + ck

+ aW

(2.7)

in which the empty summation is defined to be zero. For the special case
k = n — 1, we have

?„_,(*) = cn_, + (ft, - an_x)a^ + -j- <tfW;c). (2.8)

Recurrences for the coefficients a)k) (j = k, . . . , ri) in terms of a)k+l) (/ =
k + 1, . . . , n), follow immediately by comparing (2.6) with (2.7) and (2.8).

In detail, the two-stage algorithm is as follows. Here we adopt the convention
that, if a value zjk) (say) is not defined formally, then zjk) = z}*-1) (for stage I) or

j*) j * o (for stage II).
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Algorithm 1. Dual (PTa = / ) .

Stage I c}0) =fj (/ = 0 , . . . , n).
For k = 0 to n - 1 :

for y = n to A: + 1 (step -1 ) :

Stage II
ajn) = cjn) (y = 0, . . . , n),

For A: = n - 2 to 0 (step -1):
ak + (Po ~" a*) f l*+l

y = l t o n - 2 - A : :

The solution is a; = aj0) (y = 0 , . . . , «). D

Following the approach used for the (monomial) Vandermonde matrix in [4],
we derive an algorithm for solving the primal system (1.2) by expressing
Algorithm 1 in matrix-vector notation. Observe that, in stage I of Algorithm 1,
the vectors c w = [ctf\ ..., cik)]T are related according to

where Lk is a certain lower bidiagonal matrix (see [4] for the details). Similarly,
for the vectors a(k) = [atf\ •.., a(

n
k)]T in stage II,

where Uk is upper triangular with nonzeros on the diagonal and the first two
superdiagonals only.

Thus

P - T f = a = a m = £ / „ . • • £/„_!<?<"> = U 0 - - - U n - x L n ^ • • • Lof,

so that P~T = (t/0 • • • t/n_i)(Ln_i • • • Lo) = UL (which is a UL decomposition of
P~T, in factored form). Hence, the solution to the primal system is given by

Writing out this equation in detail, we obtain the following algorithm.

Algorithm 2. Primal (Px = b).

Stage I dy» = b, U = 0,...,n).
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For k = 0 to n - 2:

4*+V) = (0o "
for / = 2 to n - k:

L

4n) = 05o - ^-1)4-V> + 4"-

Stage// *}n> = d}"> (y = O , . . . , n ) .

For k = n - 1 to 0 (step - 1 ) :

*<* + }) = 4 * ) ;

for / = k + 1 to n:

L
for ; = k + 1 to n:

L

The solution is xy = x}0) (; = 0, . . . , «). D

Polynomials of interest in Algorithms 1 and 2 include the following.

Monomials: 0, = 1, ft. = y; = 0. (2.9)

Chebyshev: 0O = 1, 0O = O; 0y = 2, ft = 0, y, = \ (j&\). (2.10)

Legendre (with the normalization py(l) = 1 for all / ) :

e, = {2i + \)l(j + \), ft = 0, y, = ; / ( / + 1). (2.11)

Hermite: 0/ = 2) ft = 0, yy = 2;. (2.12)

Laguerre: 0, = - l / ( ; + 1), ft = 2/ + l, yy = ; / ( / +1). (2.13)

Of course, for the monomials, Algorithms 1 and 2 reduce to the algorithms in [4].
The operation counts for Algorithms 1 and 2 are the same, by construction.

Notice that, in both algorithms, y, appears only in the terms y;/0y. Assuming that
the values y,/0; are given, then the operation count is n(2n + \)M + \n(5n + 3)
A, where A denotes an addition or subtraction and M is a multiplication or
division.

Note that the algorithms can be implemented in such a way that the
right-hand-side vector is transformed into the solution vector, without using any
extra storage.

3. Numerical stability

In this section, we examine the behaviour of Algorithms 1 and 2 in
finite-precision arithmetic. Consider Algorithm 1. It is easy to show, inductively,
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that
min {j+2k,n)

«}0)= 5 ti?Mk) (1^*«», 0*j«n), (3.1)
•=i

where the coefficients njk) depend on the points at and on the parameters
dj, Pi, y,. Let a\k) ~ a\k) denote the values computed in finite-precision arithmetic
with unit roundoff u [8, p. 32]. Corresponding to (3.1), we have

min {j+2k,n}
af)= 2 njPaW + RW (l«*«#i, 0«/«#i), (3.2)

>•=/

where Rjk) = O(u), whose precise form is unimportant, collects together terms
from a forward rounding-error analysis. Write

where, almost certainly, the relative error e\k) will satisfy \e^k)\^u. Subtracting
(3.1) from (3.2) gives

&f> - fl}0) = mm ^ ' ^ ^*>flf*>ef*> + Rf > (1*= k « n, 0 « / « n). (3.3)

Thus, unless severe cancellation takes place in the expressions (3.3), it must hold
that

|d}0) - a}0)| a u max max IfiJfM**!- (3-4)
laArSn/siamin {>+2*n}

It follows that, if any of the intermediate quantities \a\k)\ in Algorithm 1 is large
relative to some final |ajo)| (i 3=;), or to ||a||, then there is the possibility of large
relative errors |a}0)-a}U)|/|a}0)l and \\a - a | | / | | a | | respectively. The following
example shows that large relative errors can indeed be observed, even on a very
well conditioned problem.

Consider the Chebyshev polynomial dual system defined by

*,. = cos (in/n), / ^ ( - l

The points or, are the extrema of Tn(x), and it can be shown that
(a) K 2 ( P ) « 2 ,

(b) <#> =/(*„, . . . , « „ ) = 2""1 [5, p. 237],
(c) a = [0, 0, . . . . 0, 1]T,

where K2(P) = HPIUĤ * 1h is the condition number in the 2-norm.
The heuristic analysis above suggests that, for this example, the relative error

| |a-a | |2 / | |a | |2 will be of order at least 2"~1u. We tested this prediction
numerically, using the computing environment to be described in Section 4
(u « 1(T15). The results are summarized in Table 3.1. For n = 20 and n = 30, the
relative errors observed are actually somewhat larger than is predicted by (3.4)
(on the assumption that l̂ ,-*5! = 0(1)). Since the coefficient matrix P in this
example is very well-conditioned, any stable algorithm for the solution, such as
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TABLE 3.1
Results for problem (3.5) (||a||2 = l)
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n

5
10
20
30

a<n)

1-6 E l
5-1E2
5-2 E5
5-4 E8

u max
'.*

1-3 E
1-6 E
2-1E
2-4 E

-13
-11
- 7
- 3

P-.ll

2-3 E
7-5 E
1-7 E
3-6

IJII.IU

-13
-11
- 5

Gaussian elimination with partial pivoting, would yield a computed solution
accurate (in the norm sense) almost to full machine precision. In contrast, for
n = 30, Algorithm 1 provides a computed solution with no correct significant
figures.

We conclude that Algorithm 1 is numerically unstable, for the Chebyshev
polynomials at least; the same conclusion applies to Algorithm 2 because of the
underlying duality. The situation is unclear for other choices of the parameters
dp Pj, and Yj in Algorithms 1 and 2, unless specific examples of instability are
produced, or a detailed error analysis is performed—one which preferably would
apply to arbitrary dj, j3y, and yy.

A forward error analysis of the monomial versions of Algorithms 1 and 2 is
presented in [9], for the case where the points oct satisfy

0 « * 0 < a r i < - ••<<*„. (3.6)

We state without proof the following extension of Theorem 2.3 in [9].
If the conditions (3.6) and

# = 0, dj>0, Yj^O for all; (3.7)

hold, then the computed solutions a and JC from Algorithms 1 and 2 respectively
satisfy the bounds

\a-a\^qnu\p-T\\f\ + O(u2), (3.8)

\x-x\^qnu\p-l\\b\ + O(u2), (3.9)

where qn is a small constant and \X\ denotes the vector or matrix whose elements
are respectively the absolute values of the elements of the vector or matrix X.

It follows (see [9: Section 4]) that, when conditions (3.6) and (3.7) are satisfied,
Algorithms 1 and 2 introduce no more uncertainty into the numerical solution
than was already present if the machine right-hand-side vector were subject to
relative errors of the order of the unit roundoff. Thus, Algorithms 1 and 2 are
guaranteed to perform satisfactorily, being numerically stable in a weak but
relevant sense, whenever conditions (3.6) and (3.7) are satisfied. We note,
however, that the nonnegativity condition in (3.6) is likely to be violated in
problems involving orthogonal polynomials whose natural range includes part of
the negative real axis (such as the polynomials in (2.10)-(2.12)); an example of a
problem to which the analysis is not applicable is (3.5). Therefore we cannot draw
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from this analysis any overall conclusions about the stability of Algorithms 1
and 2.

In the next section we consider a practical approach to alleviating the potential
instabilities in Algorithms 1 and 2.

4. Iterative refinement in single precision

A standard way to improve the performance of a linear-equation solver is to
combine it with iterative refinement. Given the computed solution x to Ax = b,
the refinement procedure takes the form

Repeat
1. Compute r: = b -Ax.
2. Solve Ay = r.
3. Update JC <-jr + y.

This technique is perhaps most commonly applied to Gaussian elimination with
partial pivoting [8: p. 74]. Here, the refinement stage is relatively inexpensive
compared to the initial factorization stage; and it is well known that, if residuals
are computed in double precision, then iterative refinement will converge to a
solution accurate to full machine precision, as long as A is not too ill conditioned
[8: p. 75].

Iterative refinement can also be used with Algorithms 1 and 2. However, in this
case, steps 1 and 2 of the refinement procedure both require approximately the
same amount of work as computation of the original solution. Further, the
residual vector cannot be computed in a straightforward and efficient manner
using double-precision accumulation of inner products, since one would first have
to compute the elements of P in (1.1) explicitly (because they are not part of the
problem data). Therefore, for Algorithms 1 and 2, there is little point in using
iterative refinement with residuals computed in double precision; one may as well
apply the basic algorithm just once, using double-precision arithmetic throughout.

We are led to consider using iterative refinement with residuals computed in
single precision, an approach which has been used successfully by several authors
[3,10,12,13]. Although iterative refinement in single precision clearly cannot be
expected to produce solutions accurate to full machine precision, it can improve
greatly the stability properties of the method to which it is applied.

Jankowski & Wozniakowski [10] carry out a detailed error analysis of iterative
refinement in single precision. Their analysis applies to any method for solving
linear systems Ax = b that satisfies the following condition: if A is not too ill
conditioned, then the computed solution JC has relative error bounded in some
norm by q < 1, that is,

\\x-x\\l\\x\\^q<\. (4.1)

It is shown in [10] that any such method combined with iterative refinement in
single precision is numerically stable whenever qte(A) < 1, where K(A) =

H/4"1!! is the condition number. By numerically stable is meant that the



FAST SOLUTION OF VANDERMONDE-LIKE SYSTEMS 4 8 1

computed solution x satisfies

x||, (4.2)

where cn is a constant depending only on n, the order of A.

Remark. Our terminology differs from that in [10], where a method is called
well-behaved if (4.2) is satisfied, and numerically stable if a weaker condition is
satisfied.

It is easy to show [8: p. 16] that (4.2) implies the existence of a matrix E and a
constant c'n for which

(A + E)x = b and ||£|| « c > \\A\\, (4.3)

assuming that CKUK{A) < \. Similarly, (4.3) implies (4.2) if c'nutc{A) < \. Thus a
numerically stable method is one for which the computed solution is the true
solution to a 'nearby problem'.

Note that the following definition of stability is equivalent to (4.2) when (4.1) is
satisfied:

\\b - Ax|| =£ c> ||i41| ||x|| for some constant e£. (4.4)

We prefer to work with (4.4) because, for the 2-norm, it is unconditionally
equivalent to (4.3) (with c'n = ĉ ') [8: p. 16].

Unfortunately, for the Chebyshev polynomials at least, Algorithms 1 and 2 do
not satisfy condition (4.1). This is shown by the example of Section 3, where A is
very well conditioned, but where, for n = 30, we must take q > 1 (see Table 3.1).
Although the results of [10] are thus not strictly applicable here, they do provide
motivation for investigating the behaviour of iterative refinement in single
precision experimentally.

We have carried out some experiments with the Chebyshev-polynomial version
of Algorithm 1, using one step of iterative refinement. The computations were
performed in Fortran 77 on a CDC computer with unit roundoff u = 2 - 4 8 «
3.55 x 10~15. The residuals

were computed in single precision using the nested-multiplication algorithm for
orthogonal polynomials [5: p. 257]. In the general case, computation of r in this
way costs approximately 3n2(M + A) (recall that Algorithm 1 requires approxim-
ately 2n2M + WA).

For each computed solution, we evaluated the quantities

\\a-a\\z ||/-rTa||2
E R R = " M"2, R E S = " y " 2 ,

Hll IHl
where a denotes the original or the corrected solution, and T = ]Ti-i(.<Xj-i)i] £
^(n+ijxcn+i) denotes the 'Chebyshev Vandermonde'. Here the exact solution a to
the machine problem is approximated by the solution computed using Algorithm
1 in double precision. Note that numerical stability as defined in (4.4) cor-
responds to RES=sdn, for some constant dn (since ||r||2=s ||r||F=£/i + 1).
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We also computed, for the original solution only, the quantity

which may be interpreted as a 'growth factor' for stage II of Algorithm 1, and
which the analysis of Section 3 suggests should provide an approximate lower
bound for the relative error, ERR.

Twelve test problems were solved, comprising all combinations of the point
distributions

Al: <*„_, = cos (ijz/n), (extrema of Tn(x))

A2: orn_,, = cos [(/ + \)nl(n + 1)], (zeros of TB+1(JC))

A3: at=-l+2iln,

A4: or, = i/n,

and the right-hand sides

Fl: /, = (- l ) ' ,
F2: / = [ 1 , 0 , . . . , 0]T,

F3: /•= 1/(1 +25a?),

The conditioning of the Chebyshev Vandermonde for these four point
distributions is summarized as follows. First, it can be shown that

Al: js-2(r)ss2 for all n,

A2: K2(T) = 2 for all n (cf. [7]).

Second, the following values for K2{T) were obtained by computing the
singular-value decomposition (in single precision).

n: 5 10 20 30

A3 2-9 23-7 8-6 E3 51E6
A4 4-2 E3 1-0 E8 5-4 E14 2-0 E15

It can be seen that T is singular to working precision for the distribution A4 when
n = 30.

We present a representative selection of the results in Tables 4.1-4.5. Note
that problem Al /F l (Table 4.1) is the same as problem (3.5).

TABLE 4.1
Problem Al/Fl

n

5
10
20
30

\\a\U

1-0
10
10
1-0

EST

3-8 El
4-6 E3
5-9 E7
6-9 El l

Original
ERR

6-4 El
2-1 E4
4-7 E9
10E15

RES

1-1 E2
5-7 E4
1-8 E10
1-2 E15

Corrected
ERR

2-5
9-8
2-7 El
1-3 E2

RES

51
3 1 El
1-3 E2
5-3 E2
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TABLE 4.2
Problem A2/F2
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n

5 0
10 0
20 9
30 6

n

5
10
20
30

n

5
10
20
30

n

5
10
20
30

ll«l

•32
•18
•5E
•4E

ll«
1-6
9-3

1-

- 2
- 2

II.

2-8 E3
1-4 E6

2
3
2
1

1
1-
3-
3-
1-

ll«ll-

•0E3
•5E7

EST

1-9 El
1-5 E3
1-4 E7
1-4 El l

EST

2-9 El
1-3 E3
3-3 E5
6-5 E7

EST

11
1-1

•0E16 10
•4E2!

l«ll-

1E1
1E3
8E8
1E13

> 10

EST

1-3
11
10
1-0

Original
ERR

7-0 El
21E3
4-3 E8
91E12

TABLE
Problem

RES

1-4 E2
5-1E3
1-5 E9
3-7 E13

4.3
A3/F1

Original
ERR

4-8 El
1-3 E3
1-7 E6
1-3 E10

TABLE
Problem

RES

9-3 El
3-5 E3
5-0 E6
3-8 E10

4.4
A4/F1

Original
ERR

2-5
1-9
1-4
1-3

TABLE
Problem

RES

0-66
1-9
1-7
4-8

4.5
A4/F3

Original
ERR

1-1 El
8-2
5-3 E5
3-6 E9

RES

0-97
3 0
1-6
3-6

Corrected
ERR

2-1
1-8E1
2-8 El
1-2E2

RES

2-4
4-1 El
90 El
4-6 E2

Corrected
ERR

40
1-0 El
2-2 E3
1-7 E5

RES

91
30 El
6-0 El
3-6 El

Corrected
ERR

4-2 E2
6-7 E5
2-0 E14
2-7 E24

RES

1-0
1-3
8-7
2-9

Corrected
ERR

4-1 E2
2-2 E6
2-1 E13
6-8 E23

RES

0-77
1-6
2-1
40

We make several comments on the results.
(1) Severe numerical instability is observed in problems Al/Fl , A2/F2, and

A3/F1, as evidenced by the large relative residuals (RES » 1 ) in Tables 4.1-4.3. It
is clear that the example in Section 3 is not an isolated 'bad case'.

(2) In all the problems (including those not shown in the tables), the relative
residual after one step of iterative refinement in single precision is of an
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acceptable size; the refinement stage reduces the residual by many orders of
magnitude in several cases.

(3) In Tables 4.1-4.3, a consequence of the reduction in the residuals brought
about by the refinement stage is a reduction of the error: in norm terms, the error
is bounded by the product of the condition number and the residual, and the
condition number is very small for the point distributions Al and A2, as noted
above.

(4) For the problems in Tables 4.4 and 4.5, the points a, satisfy (3.6) and so
the bound (3.8) is applicable. For the problem A4/F1, it can be shown that
\T~T\ I/I = \a\, so that (3.8) takes the form

which implies very small relative errors, as indeed are observed in Table 4.4
(ERR=1). Although iterative refinement does not worsen the already small
residuals, it clearly has a disastrous effect on the error in Tables 4.4 and 4.5! This
behaviour is explained by the fact that, in these two examples, the computed
residual for the original solution has few (if any) correct digits, due to
cancellation; consequently, Algorithm 1 solves (however accurately) the 'wrong'
system, producing a correction consisting mainly of noise.

(5) The approximate lower bound EST for the relative error provides reason-
able order-of-magnitude estimates, except in Table 4.5, where the bounds are far
too small. However, it is interesting to note that, in all cases, EST is of the same
order of magnitude as the relative residual RES.

For the test problems above, we also investigated the effect of performing more
than one step of iterative refinement (in single precision). The second and
subsequent refinement steps were found to bring about little or no reduction in
the size of the residual or the error.

We mention briefly a further experiment motivated by [1], wherein the dual
Chebyshev Vandermonde system is solved by converting it into a monomial
Vandermonde system, using the relationship

T = LV, V = lai
JZ\],

where L is a lower triangular matrix of the form illustrated

L =

1
0

- 1
0
1

1
0

- 3
0

2
0

- 8
4
0 8 j

We wanted to see whether this approach circumvents the instability of the
Chebyshev-polynomial version of Algorithm 1. On the same test problems as
above, we found that the errors and residuals were generally of the same order of
magnitude as those for the direct-solution approach. When one step of iterative
refinement was used with both methods, the conversion approach generally gave
larger errors and residuals. These results suggest that, when using Algorithm 1, it
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is preferable to solve a Chebyshev Vandermonde system directly, rather than to
convert to monomial form.

S. Conclusions

Based on our analysis and numerical experiments, we recommend that
Algorithm 1 be used in the following way, for all choices of the parameters
(similarly for Algorithm 2).

(1) Obtain the computed solution a from Algorithm 1.
(2) Compute, in single precision, the residual vector r=f-PTa. If ||r||2 =

« \\P\\2 \\0\\2 then accept a (here ||.P||2 can be approximated by \\P\\F, for
example).

(3) Otherwise, apply one step of iterative refinement, using the r from step (2),
and accept the corrected solution.

It is important to terminate in step (2) if the residual is relatively small, because
not to do so risks losing the very favourable accuracy properties which hold for
certain classes of problem (see (3.8) and Tables 4.4-4.5).

Finally, we note that, for the original monomial versions of Algorithms 1 and 2,
there have been no reports of unstable behaviour, despite wide experience with
the algorithms [1,4,9,13,14]. It would be interesting to investigate to what
extent the instability observed in the Chebyshev versions of the algorithms is
prevalent for other choices of the parameters. An error analysis encompassing all
classes of method and problem, not just those defined by (3.6) and (3.7), is
desirable in order to answer this question fully.
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