
\mathrm{S}\mathrm{I}\mathrm{A}\mathrm{M} \mathrm{J}. \mathrm{M}\mathrm{A}\mathrm{T}\mathrm{R}\mathrm{I}\mathrm{X} \mathrm{A}\mathrm{N}\mathrm{A}\mathrm{L}. \mathrm{A}\mathrm{P}\mathrm{P}\mathrm{L}. © 2023 \mathrm{S}\mathrm{o}\mathrm{c}\mathrm{i}\mathrm{e}\mathrm{t}\mathrm{y} \mathrm{f}\mathrm{o}\mathrm{r} \mathrm{I}\mathrm{n}\mathrm{d}\mathrm{u}\mathrm{s}\mathrm{t}\mathrm{r}\mathrm{i}\mathrm{a}\mathrm{l} \mathrm{a}\mathrm{n}\mathrm{d} \mathrm{A}\mathrm{p}\mathrm{p}\mathrm{l}\mathrm{i}\mathrm{e}\mathrm{d} \mathrm{M}\mathrm{a}\mathrm{t}\mathrm{h}\mathrm{e}\mathrm{m}\mathrm{a}\mathrm{t}\mathrm{i}\mathrm{c}\mathrm{s}
\mathrm{V}\mathrm{o}\mathrm{l}. 44, \mathrm{N}\mathrm{o}. 1, \mathrm{p}\mathrm{p}. 156-174

COMPUTING THE SQUARE ROOT OF A LOW-RANK
PERTURBATION OF THE SCALED IDENTITY MATRIX\ast

MASSIMILIANO FASI\dagger , NICHOLAS J. HIGHAM\ddagger , AND XIAOBO LIU\ddagger

Abstract. We consider the problem of computing the square root of a perturbation of the scaled
identity matrix, A = \alpha In+UV \ast , where U and V are n\times k matrices with k \leq n. This problem arises
in various applications, including computer vision and optimization methods for machine learning.
We derive a new formula for the pth root of A that involves a weighted sum of powers of the pth root
of the k\times k matrix \alpha Ik + V \ast U . This formula is particularly attractive for the square root, since the
sum has just one term when p = 2. We also derive a new class of Newton iterations for computing
the square root that exploit the low-rank structure. We test these new methods on random matrices
and on positive definite matrices arising in applications. Numerical experiments show that the new
approaches can yield a much smaller residual than existing alternatives and can be significantly faster
when the perturbation UV \ast has low rank.

Key words. matrix pth root, matrix square root, low-rank update, matrix iteration, Newton
iteration, MATLAB

MSC codes. 15A16, 65F60, 65F99

DOI. 10.1137/22M1471559

1. Introduction. Any solution of the nonlinear equationXp = A is a pth root of
the square matrix A. This matrix equation arises in many applications [19, sect. 2.14],
and various methods for solving it numerically have been proposed in the literature.
Particular attention has been devoted to the principal pth root A1/p, which for a
matrix with no eigenvalues on the closed negative real axis \BbbR - is the unique pth
root whose eigenvalues \lambda all satisfy | arg \lambda | < \pi /p. For p = 2 one obtains the square
root, which is the pth root most often needed in applications and most thoroughly
investigated in the literature. Throughout this work, ``pth root"" refers to the principal
pth root, and in particular ``square root"" refers to the principal square root, whose
eigenvalues all lie in the open right half-plane.

The state-of-the-art methods for computing the matrix square root are based on
the Schur decomposition [6], [8], [18], and can be extended to the computation of the
pth root [12], [22], [31]. These methods have excellent numerical stability, in the sense
that the computed solution satisfies essentially the same backward error bound as the
rounded exact solution.

The Schur decomposition is typically computed using the QR algorithm [34], [35],
[36], which is one of the most complex methods in matrix computation [11, sect. 7.5].
Implementing it in a robust and efficient way is a difficult task, so its low prevalence
in libraries for matrix computations on custom hardware is not surprising. For ex-

\ast
Received by the editors January 14, 2022; accepted for publication (in revised form) by P. Boito

August 18, 2022; published electronically February 27, 2023.
https://doi.org/10.1137/22M1471559
Funding: The work of the first author was supported by the Wenner-Gren Foundations grant

UPD2019-0067. The work of the second author was supported by the Engineering and Physical
Sciences Research Council grant EP/P020720/1 and the Royal Society.

\dagger
Department of Computer Science, Durham University, Upper Mountjoy Campus, Stockton Road,

Durham, DH1 3LE, UK (massimiliano.fasi@durham.ac.uk).
\ddagger
Department of Mathematics, University of Manchester, Oxford Road, Manchester, M13 9PL,

UK (nick.higham@manchester.ac.uk, xiaobo.liu@manchester.ac.uk).

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

156

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1137/22M1471559
mailto:massimiliano.fasi@durham.ac.uk
mailto:nick.higham@manchester.ac.uk
mailto:xiaobo.liu@manchester.ac.uk

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 157

ample, a nonsymmetric dense eigensolver is not present in the NVIDIA cuSOLVER
library.1 Multiprecision environments often do not supply a routine for computing
the Schur decomposition [10, sect. 5]; examples lacking one are the Julia language [5],
which currently (version 1.7.1) does not provide it for its BigFloat data type, and the
MATLAB Symbolic Math Toolbox [33], where it is not available for the sym data type
at the time of writing (version 9).

Matrix iterations for computing A1/2 are an attractive alternative in these situa-
tions. Newton iterations converge quadratically in exact arithmetic and require only
matrix multiplication and (in most cases) matrix inversion or the solution of multiple
right-hand side linear systems. In deep learning, for example, the Newton--Schulz it-
eration [19, p. 153], [27] is widely used as an alternative to diagonalization when A is
positive semidefinite. Being rich in matrix multiplication, it offers better performance
on modern GPUs in a variety of computer vision tasks [32]. Tailored iterations are
available for computing the square root of matrices with special structure or prop-
erties, including M -matrices, H-matrices, and Hermitian positive definite matrices;
these are surveyed in [19, sect. 6.8].

Here we study methods for computing the square root of a matrix A \in \BbbC n\times n of
the form

A = \alpha In + UV \ast , \alpha \in \BbbC , U, V \in \BbbC n\times k, k \leq n, \Lambda (A) \cap \BbbR - = \emptyset ,(1.1)

where In is the identity matrix of order n and \Lambda (A) denotes the spectrum of A. The
condition \Lambda (A) \cap \BbbR - = \emptyset implies that A is necessarily nonsingular, and if k < n,
so that UV \ast is rank deficient, it also implies that \alpha lies off \BbbR - (and in particular is
nonzero). The same condition also requires that the k \times k matrix \alpha Ik + V \ast U has no
eigenvalues on \BbbR - , since the nonzero eigenvalues of BC and CB are the same for any
two matrices B and C [19, Thm. 1.32], [20, Thm. 1.3.22].

An explicit expression for a function of a matrix in the form (1.1) is given by
Higham in [19, Thm. 1.35] (and also by Harris in [15, Lem. 2] for \alpha = 0). The result
allows us to evaluate f(A) and only requires that f be defined on the spectrum of A.
We recall this definition and give the corresponding theorem.

Definition 1.1 ([19, Def. 1.1]). Let A \in \BbbC n\times n, let \lambda 1, . . ., \lambda m be the distinct
eigenvalues of A, and let \zeta 1,. . ., \zeta m be their respective indices (that is, \zeta i is the order of
the largest Jordan block in which \lambda i appears). A function f is defined on the spectrum
of A if the values f (j)(\lambda i) exist for j = 0, . . . , \zeta i - 1 and i = 1, . . . ,m.

Theorem 1.2 ([19, Thm. 1.35]). Let U, V \in \BbbC n\times k with k \leq n and assume that
V \ast U is nonsingular. Let f be defined on the spectrum of A = \alpha In + UV \ast , and if
k = n let f be defined at \alpha . Then

f(A) = f(\alpha)In + U(V \ast U) - 1
\bigl(
f(\alpha Ik + V \ast U) - f(\alpha)Ik

\bigr)
V \ast .(1.2)

The theorem says two things: that f(A), like A, is a perturbation of rank at most
k of the identity matrix, and that f(A) can be computed by evaluating f and the
inverse at two k \times k matrices. The formula (1.2) is of clear computational interest
when k \ll n.

Note that if we take f(x) = x - 1 and write A + UV \ast = A(In + A - 1UV \ast), then
after a little manipulation we obtain as a special case of (1.2) the Sherman--Morrison--
Woodbury formula, which says that if Ik + V \ast A - 1U is nonsingular then A+ UV \ast is
also nonsingular and

1https://docs.nvidia.com/cuda/cusolver/.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://docs.nvidia.com/cuda/cusolver/

158 M. FASI, N. J. HIGHAM, AND X. LIU

Fig. 1.1. Relative residual of (1.4) and (1.9) in the 2-norm. The matrix A is of the form (1.1)
for n = 100, \alpha = 1, and V = U . The elements of U are drawn from different distributions in the
two panels. Note that the y-axes have a different range.

(A+ UV \ast) - 1 = A - 1 - A - 1U(Ik + V \ast A - 1U) - 1V \ast A - 1.(1.3)

Taking for f the square root in (1.2) gives

A1/2 = \alpha 1/2In + U(V \ast U) - 1
\bigl(
(\alpha Ik + V \ast U)1/2 - \alpha 1/2Ik

\bigr)
V \ast .(1.4)

This formula is valid only if V \ast U is nonsingular, yet this condition is not required
for A1/2 to be defined. This is undesirable, since there is no guarantee that for a
rank-k perturbation written as UV \ast the matrix V \ast U will be nonsingular. Consider
the k = 1 case with U = ei and V = ej for i \not = j: formula (1.4) fails since V \ast U = 0,
and there is no alternative way of writing this perturbation. In general, we cannot
avoid a singular V \ast U given only the assumption that A1/2 is well defined, and thus
the formula cannot always be applicable.

Another problem with (1.2) is that it may not provide full accuracy when eval-
uated in floating-point arithmetic if the condition number of V \ast U is large. This is
illustrated in Figure 1.1, where we compare the accuracy of (1.4) and (1.9) (see below)
on matrices of the form (1.1) for n = 100 and \alpha = 1. The square root of a k \times k
matrix is computed by the Schur method using the MATLAB function sqrtm. We
gauge the accuracy by measuring the 2-norm relative residual of the equation that
defines the square root, that is, the quantity

\| \widehat X2 - A\|
\| A\| ,(1.5)

where \widehat X is a computed approximation to the square root obtained in MATLAB
using binary64 arithmetic with unit roundoff u64 \approx 1.1 \times 10 - 16. In order to reduce
the magnitude of possible roundoff errors in the computation of the relative residual,

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 159

(1.5) is evaluated in binary128 arithmetic by relying on the Multiprecision Computing
Toolbox for MATLAB [25].

In Figure 1.1(a), the matrix U \in \BbbC n\times k, for k varying between 1 and 100, has
entries drawn from the normal distribution with mean 0 and variance n - 2, which we
denote by \scrN (0, n - 2), and we set V = U so that A is Hermitian. In Figure 1.1(b), the
parameter k is set to 10, and the matrices U and V are generated with the MATLAB
code

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 3

Taking for f the square root in (1.2) gives

(1.4) A1/2 = \alpha 1/2In + U(V \ast U) - 1
\bigl(
(\alpha Ik + V \ast U)1/2 - \alpha 1/2Ik

\bigr)
V \ast .

This formula is valid only if V \ast U is nonsingular, yet this condition is not required
for A1/2 to be defined. This is undesirable, since there is no guarantee that for a
rank-k perturbation written as UV \ast the matrix V \ast U will be nonsingular. Consider
the k = 1 case with U = ei and V = ej for i \not = j: formula (1.4) fails since V \ast U = 0,
and there is no alternative way of writing this perturbation. In general, we cannot
avoid a singular V \ast U given only the assumption that A1/2 is well defined, and thus
the formula cannot always be applicable.

Another problem with (1.2) is that it may not provide full accuracy when eval-
uated in floating-point arithmetic if the condition number of V \ast U is large. This is
illustrated in Figure 1.1, where we compare the accuracy of (1.4) and (1.9) (see below)
on matrices of the form (1.1) for n = 100 and \alpha = 1. The square root of a k \times k
matrix is computed by the Schur method using the MATLAB function sqrtm. We
gauge the accuracy by measuring the 2-norm relative residual of the equation that
defines the square root, that is, the quantity

(1.5)
\| \widehat X2 - A\| 2

\| A\| 2
,

where \widehat X is a computed approximation to the square root obtained in MATLAB
using binary64 arithmetic with unit roundoff u64 \approx 1.1 \times 10 - 16. In order to reduce
the magnitude of possible roundoff errors in the computation of the relative residual,
(1.5) is evaluated in binary128 arithmetic by relying on the Multiprecision Computing
Toolbox for MATLAB [25].

In Figure 1.1a, the matrix U \in \BbbC n\times k, for k varying between 1 and 100, has
entries drawn from the normal distribution with mean 0 and variance n - 2, which we
denote by \scrN

\bigl(
0, n - 2

\bigr)
, and we set V = U so that A is Hermitian. In Figure 1.1b, the

parameter k is set to 10, and the matrices U and V are generated with the MATLAB
code

S = logspace(-log10(kappa), 0, k);

U = orth(randn(n, k));

V = U .* S;

This ensures that V \ast U has condition number approximately kappa, which in our
experiment varies between 1 and 1016. The relative residual of the solution computed
using (1.4) deteriorates as the rank of UV \ast or the condition number of V \ast U increase.

Interestingly, the Sherman--Morrison--Woodbury formula (1.3) does not involve
(V \ast U) - 1, so for particular f this term does not necessarily have to appear in a
formula for f(A). We now derive a formula for the pth root of a matrix of the form
(1.1) that does not have the restriction that V \ast U be nonsingular.

Theorem 1.3. Let U, V \in \BbbC n\times k with k \leq n have full rank and let the matrix
A = \alpha In + UV \ast have no eigenvalues on \BbbR - . Then for any integer p \geq 1,

(1.6) A1/p = \alpha 1/pIn + U

\Biggl(
p - 1\sum

i=0

\alpha i/p \cdot (\alpha Ik + V \ast U)(p - i - 1)/p

\Biggr) - 1

V \ast .

Proof. Assume, first, that V \ast U is nonsingular. Taking for f the pth root in

This ensures that V \ast U has condition number approximately equal to kappa, which
in our experiment varies between 1 and 1016. The relative residual of the solution
computed using (1.4) deteriorates as the rank of UV \ast or the condition number of V \ast U
increase.

Interestingly, the Sherman--Morrison--Woodbury formula (1.3) does not involve
(V \ast U) - 1, so for a particular f this term does not necessarily have to appear in a
formula for f(A). We now derive a formula for the pth root of a matrix of the form
(1.1) that does not have the restriction that V \ast U be nonsingular.

Theorem 1.3. Let U, V \in \BbbC n\times k with k \leq n have full rank and let the matrix
A = \alpha In + UV \ast have no eigenvalues on \BbbR - . Then for any integer p \geq 1,

A1/p = \alpha 1/pIn + U

\Biggl(
p - 1\sum

i=0

\alpha i/p \cdot (\alpha Ik + V \ast U)(p - i - 1)/p

\Biggr) - 1

V \ast .(1.6)

Proof. Assume, first, that V \ast U is nonsingular. Taking for f the pth root in
Theorem 1.2 gives

A1/p = \alpha 1/pIn + U(V \ast U) - 1
\Bigl(
(\alpha Ik + V \ast U)1/p - \alpha 1/pIk

\Bigr)
V \ast .(1.7)

On the other hand, from the identity ap - bp = (a - b)(
\sum p - 1

i=0 ap - i - 1bi) we have

(\alpha Ik + V \ast U)1/p - \alpha 1/pIk = V \ast U

\Biggl(
p - 1\sum

i=0

\alpha i/p \cdot (\alpha Ik + V \ast U)(p - i - 1)/p

\Biggr) - 1

,(1.8)

where the matrix in parentheses is nonsingular because \alpha Ik + V \ast U and \alpha Ik have no
eigenvalue in common, which means that the left-hand side of (1.8) is nonsingular.
Using the identity (1.8) in (1.7) gives (1.6). If V \ast U is singular, consider the matrix
A(t) = \alpha In+U(t)V \ast , where U(t) = U+ tV for t \in \BbbR . Then V \ast U(t) = V \ast U+ tV \ast V is
nonsingular for sufficiently small t (specifically, for any t > 0 if V \ast U has no negative
real eigenvalues and otherwise for t \in (0, | \lambda |), where \lambda is the algebraically largest
negative real eigenvalue of V \ast U). By (1.6) we have

A(t)1/p = \alpha 1/pIn + (U + tV)

\Biggl(
p - 1\sum

i=0

\alpha i/p \cdot
\bigl(
\alpha Ik + V \ast U + tV \ast V

\bigr) (p - i - 1)/p

\Biggr) - 1

V \ast ,

and taking the limit as t \rightarrow 0 gives (1.6).

Our main interest is in p = 2, for which we have the following corollary.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

160 M. FASI, N. J. HIGHAM, AND X. LIU

Corollary 1.4. Let U, V \in \BbbC n\times k with k \leq n have full rank and let the matrix
A = \alpha In + UV \ast have no eigenvalues on \BbbR - . Then

A1/2 = \alpha 1/2In + U
\bigl(
(\alpha Ik + V \ast U)1/2 + \alpha 1/2Ik

\bigr) - 1
V \ast .(1.9)

The formula (1.9) in Corollary 1.4 is a significant improvement over (1.4), since it
does not contain the factor (V \ast U) - 1. Furthermore, in the experiments of Figure 1.1,
formula (1.9) produces relative residuals of order u, unlike (1.4).

In section 2 we describe some applications that motivated this work. In section 3
we derive a Newton iteration that exploits the low-rank structure and provides an
alternative to using (1.9); it is a structured variant of the Denman--Beavers iteration.
In section 4 we compare the computational cost of several methods applied to the
explicitly formed A or to (1.9), and in section 5 we compare the methods in terms
of numerical stability and speed on random matrices as well as on positive definite
matrices arising in real applications. Concluding remarks are offered in section 6.

We note that similar problems have been addressed in the literature. Bernstein
and Van Loan [4] proposed an algorithm for computing f(X+uvT) for X \in \BbbR n\times n and
u, v \in \BbbR n, where f is a rational function defined on the spectra of X and X + uvT .
Beckermann, Kressner, and Schweitzer [3] proposed a polynomial Krylov method for
approximating f(X +UV \ast) for any X \in \BbbC n\times n, provided that UV \ast has low rank and
that f is analytic on some domain containing the spectra of X and X + UV \ast . The
algorithms are given and their convergence analyzed for the case of rank-1 perturba-
tions, but the authors suggest two approaches to apply the proposed algorithms to
higher rank. More recently, Beckermann et al. [2] have developed a rational Krylov
method to address the same problem. The proposed algorithm requires that the nu-
merical range of X not contain a singularity of f . For the matrix square root, the
convergence of the algorithm may be slow when \alpha \in \BbbC in (1.1) is close to the origin in
the complex plane. Being Krylov-based, these methods are necessarily iterative, and
they aim to approximate the correction f(X+UV \ast) - f(X) and compute f(X+UV \ast)
as an update of f(X), whereas the formula (1.9) is direct, has a predictable cost, and
gives an explicit expression for (\alpha In + UV \ast)1/2.

Recently, Shumeli, Drineas, and Avron [30] developed a method to compute the
quantity (X \pm UUT)\pm 1/2 for a symmetric positive semidefinite X. Their method is
based on the approximate solution of an algebraic Riccati equation, and it allows for
either symmetric positive semidefinite or symmetric negative semidefinite perturba-
tions.

2. Applications. The need to compute roots of matrices of the form (1.1) arises
in high-order optimization algorithms for machine learning [1], [14] and in machine
vision [24].

The Shampoo technique, developed by Gupta, Koren, and Singer [14], is a precon-
ditioned gradient method for second-order optimization. Computationally, the most
expensive step of the algorithm is the evaluation of

L
 - 1/2p
t GtR

 - 1/2q
t , t = 1, . . . , \ell ,

for some positive integers \ell , p, and q, where

Lt = \alpha In +

t\sum

s=1

GsG
\ast
s, Rt = \alpha Ik +

t\sum

s=1

G\ast
sGs, \alpha > 0,(2.1)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 161

and G1, . . . , Gt \in \BbbR n\times k are of rank at most r. We note that the matrix
\sum t

s=1 GsG
\ast
s

can be written as UU\ast , where U = [G1 . . . Gt] \in \BbbR n\times kt, which shows that Lt is of
the form (1.1). The original implementation of Shampoo [14] used an SVD-based
approach to compute the pth roots of Lt and Gt, but more recently Anil et al. [1]
used the Schur--Newton algorithm of Guo and Higham [13] to compute the inverse pth
roots. We note that the two algorithms are roughly equivalent for symmetric positive
definite matrices such as Lt and Rt, as both the SVD and the Schur decomposition
reduce to the eigendecomposition, and the only difference is in the way the pth roots
of the eigenvalues are computed: the SVD-based algorithm computes the pth roots of
the eigenvalues directly, whereas the Schur--Newton algorithm uses a scalar Newton
iteration.

In representations for visual recognition [24, p. 39], the square root of a matrix
of the form (1.1) is used in the spectral normalization of bilinear convolutional neural
networks. This feature normalization technique runs an input image through a convo-
lutional layer that extracts a set of k feature vectors x1, . . ., xk \in \BbbR n with nonnegative
entries. These features are then aggregated via bilinear pooling, producing the matrix

A = \alpha In +
1

k

k\sum

i=1

xix
\ast
i , \alpha > 0.

Since k depends on the size of the input image and of the convolutional filters,
whereas n depends on the number of filters, these two numbers can be very different.
Even when n and k are of similar magnitude, as often happens in state-of-the-art
models [24, p. 52], many of the xi may in principle be equal or very similar, producing
a perturbation of rank much smaller than k. Because of the local nature of the
convolutional filters, this is likely to happen when a large portion of the input image
is filled by a homogeneous texture, as is the case for images with bursty features such
as those considered in [24, Chap. 4]. The low-rank approximation can be obtained
efficiently by using, for example, the randomized SVD algorithm recently developed
by Nakatsukasa [26].

The need for computing the square root of a matrix of the form (1.1) also comes
from numerical considerations in computing the square root of a singular or nearly
singular matrix B. Rounding errors in floating-point arithmetic can displace small
positive real eigenvalues of B to the negative real axis, where the principal square
root is not well defined. In order to avoid potential issues, one can regularize B
by adding the term \alpha I for some small positive constant \alpha : if B is factorized into a
product of the form UV \ast by truncating its SVD, then this diagonal shift produces a
matrix of the form (1.1). This technique has been used, for example, to regularize
some structured layers of deep neural networks [23]. The same regularization may be
of interest when computing the inverse square roots of matrices of the form 1

nX
TX,

where X represents the data matrix and n is the number of samples. Matrices of this
form arise in the training of deep neural networks [28], [37].

3. Newton iterations. An obvious approach for computing the square root is
to apply any Newton iteration to A in (1.1) directly. For k \ll n, a more efficient
strategy is to invoke (1.9) in Corollary 1.4 and apply the iteration to the k\times k matrix
\alpha Ik +V \ast U . The standard Newton iteration is known to be numerically unstable [17],
[19, sect. 6.4.1], so we focus on two of its numerically stable variants, namely, the
Denman--Beavers iteration (DB) and its product form.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

162 M. FASI, N. J. HIGHAM, AND X. LIU

The (scaled) DB iteration [9], [19, sect. 6.3] is

Xi+1 =
1

2

\bigl(
\mu iXi + \mu i

 - 1Y - 1
i

\bigr)
, X0 = A,

Yi+1 =
1

2

\bigl(
\mu iYi + \mu i

 - 1X - 1
i

\bigr)
, Y0 = I,

(3.1)

where the positive scaling parameter \mu i \in \BbbR can be used to accelerate the convergence
of the method in its initial steps. The choice \mu i = 1 yields the unscaled DB method,
for which Xi and Yi converge quadratically to A1/2 and A - 1/2, respectively. An effec-
tive but possibly expensive technique for choosing the parameter \mu i is determinantal
scaling, which we discuss later in this section.

We prove by induction that if A is of the form (1.1) then for i \geq 0 the iterates
Xi and Yi can be written in the form

Xi = \beta iIn + UBiV
\ast , \beta i \in \BbbC , Bi \in \BbbC k\times k,(3.2)

Yi = \gamma iIn + UCiV
\ast , \gamma i \in \BbbC , Ci \in \BbbC k\times k.(3.3)

For i = 0, this follows from setting \beta 0 = \alpha , B0 = Ik, and \gamma 0 = 1, C0 = 0. For
the inductive step, by using the Sherman--Morrison--Woodbury formula (1.3) for X - 1

i

and Y - 1
i we obtain

Xi+1 =
1

2

\bigl(
\mu iXi + \mu i

 - 1Y - 1
i

\bigr)

=
\mu i

2
(\beta iIn + UBiV

\ast) +
(\mu i\gamma i)

 - 1

2

\bigl(
In - UCi(\gamma iIk + V \ast UCi)

 - 1V \ast \bigr)

=
\mu i\beta i + (\mu i\gamma i)

 - 1

2
In +

1

2
U
\bigl(
\mu iBi - (\mu i\gamma i)

 - 1Ci(\gamma iIk + V \ast UCi)
 - 1
\bigr)
V \ast

and

Yi+1 =
1

2

\bigl(
\mu iYi + \mu i

 - 1X - 1
i

\bigr)

=
\mu i

2
(\gamma iIn + UCiV

\ast) +
(\mu i\beta i)

 - 1

2

\bigl(
In - UBi(\beta iIk + V \ast UBi)

 - 1V \ast \bigr)

=
\mu i\gamma i + (\mu i\beta i)

 - 1

2
In +

1

2
U
\bigl(
\mu iCi - (\mu i\beta i)

 - 1Bi(\beta iIk + V \ast UBi)
 - 1
\bigr)
V \ast ,

so that

\beta i+1 =
\mu i\beta i + (\mu i\gamma i)

 - 1

2
,(3.4a)

Bi+1 =
1

2

\bigl(
\mu iBi - (\mu i\gamma i)

 - 1Ci(\gamma iIk + V \ast UCi)
 - 1
\bigr)
,(3.4b)

\gamma i+1 =
\mu i\gamma i + (\mu i\beta i)

 - 1

2
,(3.4c)

Ci+1 =
1

2

\bigl(
\mu iCi - (\mu i\beta i)

 - 1Bi(\beta iIk + V \ast UBi)
 - 1
\bigr)
.(3.4d)

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 163

With W = V \ast U \in \BbbC k\times k precomputed and stored, each step requires the solution
of two k\times k linear systems with k right-hand sides and two k\times k matrix multiplications,
for a total cost of 28

3 k3 floating-point operations (flops).
Note that since \beta i \rightarrow \alpha 1/2 and \gamma i \rightarrow \alpha - 1/2, we might be tempted to remove the

iterations for \beta i and \gamma i and replace \beta i by \alpha 1/2 in (3.4d) and \gamma i by \alpha - 1/2 in (3.4b).
However, this choice changes the iteration, which is no longer convergent in general.

By introducing the product Mi = XiYi and rewriting (3.1), one of the inversions
can be traded for a multiplication, giving the product form of the DB iteration [7],
[19, sect. 6.3]

Mi+1 =
1

2

\biggl(
In +

\mu i
2Mi + \mu i

 - 2M - 1
i

2

\biggr)
, M0 = A,

Xi+1 =
1

2
\mu iXi

\bigl(
In + \mu i

 - 2M - 1
i

\bigr)
, X0 = A.

(3.5)

Here, Xi \rightarrow A1/2 and Mi \rightarrow I as i \rightarrow \infty .
Now we show that if A has the form (1.1) then for i \geq 0 the matrix Mi has the

form

Mi = \nu iIn + UNiV
\ast , \nu i \in \BbbC , Ni \in \BbbC k\times k,(3.6)

and Xi has the form (3.2). For i = 0, this follows from setting \nu 0 = \beta 0 = \alpha and
N0 = B0 = Ik. For the inductive step, by using the Sherman--Morrison--Woodbury
formula (1.3) for M - 1

i we obtain for Mi+1 the expression

Mi+1 =
1

2

\biggl(
In +

\mu i
2Mi + \mu i

 - 2M - 1
i

2

\biggr)

=
1

2

\biggl(
In +

\mu i
2(\nu iIn + UNiV

\ast) + \mu i
 - 2\nu i

 - 1(In - UNi(\nu iIk + V \ast UNi)
 - 1V \ast)

2

\biggr)

=
2 + (\mu i

2\nu i + \mu i
 - 2\nu i

 - 1)

4
In +

1

4
U
\bigl(
\mu i

2Ni - (\mu i
2\nu i)

 - 1Ni(\nu iIk + V \ast UNi)
 - 1
\bigr)
V \ast

=
2 + (\mu i

2\nu i + \mu i
 - 2\nu i

 - 1)

4
In +

1

4
U
\bigl(
\mu i

2Ni - Si

\bigr)
V \ast ,

(3.7)

where

Si = (\mu i
2\nu i)

 - 1Ni(\nu iIk + V \ast UNi)
 - 1.

Similarly, for Xi+1 we have

Xi+1 =
\mu i

2
Xi

\bigl(
In + \mu i

 - 2M - 1
i

\bigr)

=
\mu i

2
(\beta iIn + UBiV

\ast)
\bigl(
In + \mu i

 - 2\nu i
 - 1(In - UNi(\nu iIk + V \ast UNi)

 - 1V \ast)
\bigr)

=
\mu i

2
\beta i(1 + \mu i

 - 2\nu i
 - 1)In +

1

2
U
\bigl(
(\mu i + \mu i

 - 1\nu i
 - 1)Bi - \mu i\beta iSi - \mu iBiV

\ast USi

\bigr)
V \ast .

(3.8)

From (3.7) and (3.8) we can read off formulas for \nu i+1, Ni+1, \beta i+1, and Bi+1 in
terms of \nu i, Ni, \beta i, and Bi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

164 M. FASI, N. J. HIGHAM, AND X. LIU

With V \ast U computed initially and stored, forming Si requires one k \times k matrix
multiplication and one k\times k linear system solve with k right-hand sides, and computing
Bi takes two additional k\times k matrix products. Therefore, each iteration entails three
k \times k matrix products and the solution of a k \times k linear system with k right-hand
sides, for a total cost of 26

3 k3 flops.
An effective scaling is determinantal scaling, which is given for the DB iteration

by

\mu i =

\bigm| \bigm| \bigm| \bigm| \bigm|

\sqrt{}
det(A)

det(Xi)

\bigm| \bigm| \bigm| \bigm| \bigm|

1/n

=

\bigm| \bigm| \bigm| \bigm|
1

det(Xi) det(Yi)

\bigm| \bigm| \bigm| \bigm|
1/2n

and for the product form of the DB iteration by

\mu i =

\bigm| \bigm| \bigm| \bigm|
1

det(Mi)

\bigm| \bigm| \bigm| \bigm|
1/2n

.

In order to perform this scaling efficiently, however, it is necessary to exploit the
structure of the matrices A, Xi, Yi, and Mi when computing their determinants. We
explain how to compute the determinant of Xi in (3.2); those of A in (1.1), of Yi in
(3.3), and of Mi in (3.6) can be computed analogously. By exploiting the identity
det(I +AB) = det(I +BA), we obtain

det(Xi) = det(\beta iIn + UBiV
\ast)

= \beta i
n det(Ik + \beta i

 - 1(V \ast U)Bi)

= \beta i
n - k det(\beta iIk + (V \ast U)Bi),

where the last expression involves only k\times k matrices. Since \beta i can be small, to avoid
underflow in forming \beta i

n - k for large n - k we should form directly

| det(Xi)| 1/n = \beta i
1 - k/n | det(\beta iIk + (V \ast U)Bi)| 1/n ,

rather than computing det(Xi) explicitly.
The det term itself is also prone to underflow, so care is needed in its evaluation.
If \mu i becomes an infinity, a NaN, or 0 we set \mu i = 1. As is customary when using

scaled iterations [16], we also set \mu i = 1 when the relative difference between \mu i - 1

and \mu i becomes small.

4. Cost comparison of the methods. Now we compare the computational
cost of the methods discussed in the previous sections for computing the square root
of the matrix A in (1.1).

In Table 4.1 the methods are divided into two categories: Schur-based methods
and Newton methods. We report the asymptotic cost of the methods, where we
assume that the linear systems are solved using LU factorization. We give the cost in
terms of flops and in terms of matrix multiplications, matrix inversions, and multiple-
right-hand-side system solves.

For k \ll n, the computational cost of computing A1/2 is reduced from O(n3)
for the standard (unstructured) methods to O(n2) for the methods that exploit the
low-rank structure, assuming that for the Newton methods the number of iterations
does not depend on k or n. Among the Schur-free methods that exploit the low-rank
structure, formula (1.9) has the least cost, regardless of what form of the DB iteration

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 165

Table 4.1
Asymptotic cost of methods for computing (\alpha I + UV \ast)1/2 for U, V \in \BbbC n\times k. The second and

third column report the cost of the methods in terms of flops and matrix operations, respectively.
Here, Dk, Ik, and Mk denote the solution of a k \times k linear system with k right-hand sides, the
inversion of a matrix of order k, and the multiplication of two matrices of order k, respectively. For
the iterative methods, N is the total number of iterations performed.

Operations
Method Total flops per iteration

Schur-based Schur method 28 1
3
n3 --

Formula (1.9) with Schur method 2kn2 + 4k2n+ 29k3 --

Newton DB iteration 4Nn3 2 In

Product DB iteration 4Nn3 Mn + In

Structured DB 2kn2 + 4k2n+ 9 1
3
Nk3 2Mk + 2Dk

Structured product DB 2kn2 + 4k2n+ 8 2
3
Nk3 3Mk +Dk

Formula (1.9) with DB 2kn2 + 4k2n+ 4Nk3 2 Ik

Formula (1.9) with product DB 2kn2 + 4k2n+ 4Nk3 Mk + Ik

is used to compute the k \times k square root. It will be cheaper to evaluate (1.9) using
the DB iteration (plain or in product form) as long as convergence is achieved in no
more than 7 steps, while the Schur method will be more convenient for matrices that
would require 8 or more iterations.

5. Numerical experiments. In this section we evaluate the performance of
four methods for computing the square root of matrices of the form (1.1), which are
implemented in the following MATLAB codes.

\bullet schur\.full: an algorithm that first builds the matrix A in (1.1) by comput-
ing the outer product and then computes its square root using the MATLAB
function sqrtm, which implements the Schur method [6], [8], [18]. If U = V ,
the matrix A is normal and its triangular Schur factor is diagonal. In this case,
this algorithm reduces to the computation of Q\Kappa 1/2Q\ast , where A = Q\Kappa Q\ast is
a spectral decomposition of A.

\bullet schur\.k: an implementation of (1.9), where the square root of the k \times k
matrix is computed using sqrtm and the k \times k linear system with k right-
hand sides is solved using the MATLAB backslash operator.

\bullet db\.prod\.k: an implementation of (1.9), where the square root of the k \times k
matrix is computed using the DB iteration in product form (3.5) with deter-
minantal scaling and the k\times k linear system with k right-hand sides is solved
using the MATLAB backslash operator.

\bullet db\.prod\.struct: the structured DB iteration in product form discussed in
section 3, which iterates on k \times k matrices. The algorithm uses the determi-
nantal scaling in (3.6) and (3.7).

The experiments were run using the 64-bit GNU/Linux version of MATLAB
9.11.0 (R2021b Update 1) on a machine equipped with an AMD Ryzen 7 Pro 5850U
running at 1.90GHz and 32 GiB of RAM. The code we used to produce the results
in this section is available on GitHub.2

For the DB iterations we use the following stopping criterion: we look at Bi, one of
the k\times k matrices on which we iterate, and we return the current approximation when

2https://github.com/Xiaobo-Liu/sqrtm-lrpsi.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/Xiaobo-Liu/sqrtm-lrpsi

166 M. FASI, N. J. HIGHAM, AND X. LIU

the 1-norm of the relative change between two successive iterations falls below a given
tolerance \tau , which for our experiments was set to 10u64 for binary64 arithmetic and
8u32 for binary32 precision, where u64 = 2 - 53 \approx 1\times 10 - 16 and u32 = 2 - 24 \approx 6\times 10 - 8

are the unit roundoffs of binary64 and binary32 arithmetic, respectively.
For each computed square root \widehat X of A, we compute the 2-norm relative residual

in (1.5) and we gauge the quality of \widehat X by comparing the relative residual with the
quantity \alpha 2(X)u, where

\alpha 2(X) =
\| X\| 2
\| A\|

can be regarded as a condition number for the relative residual [6, sect. 4], [18, sect. 5],
and u is the unit roundoff of the working precision. We note that \alpha 2(X) \equiv 1 if A is
normal [6, sect. 4], thus we do not report the value of \alpha 2(X) in such cases.

5.1. Quality. First we compare our four implementations in terms of the quality
of the computed solution. In these experiments we consider the matrix A in (1.1) for
U = V and n = 100. For the dimension k we vary the ratio k/n from 0 to 1 with an
increment of 0.05 and replace the zero ratio by 0.01. Figure 5.1 reports the relative
residual (1.5). The matrix U has entries drawn from \scrN (0, n - 2) in Figure 5.1(a), and
from the uniform distribution over the open interval (0, n - 1), which we denote by
\scrU (0, n - 1), in Figure 5.1(b). In these two figures \alpha = 1 is used. In Figure 5.1(c,d) the
matrix U has entries drawn from \scrU (0, n - 1) with \alpha = 0.1 and \alpha = 0.001, respectively.

In Figure 5.1(a,b) the relative residual of db\.prod\.struct is indistinguishable
from that of schur\.k and db\.prod\.k, which exploit the formula (1.9). The relative
residual of schur\.full, on the other hand, is about one and a half orders of magnitude
larger in both cases and, in fact, schur\.full is the only algorithm that produces a
relative residual not of the same magnitude as \alpha 2(X)u; the reason for this mild
instability is not clear. In Figure 5.1(c) the performance of the algorithms does not
change much from that in Figure 5.1(b) when \alpha decreases to 0.1. In Figure 5.1(d)
we see that if \alpha = 0.001 then db\.prod\.struct shows signs of instability as k/n
approaches 1, while the other algorithms remain largely stable and schur\.full has
relatively better performance for small \alpha . With the chosen values of \alpha , the matrix A
is very well conditioned, as \kappa 2(A) < 10. We repeated the experiment with the setting
in Figure 5.1(d) but further decreasing \alpha to 10 - 6. In this case \kappa 2(A) = O(n), and
the algorithms behaved as in Figure 5.1(d).

Next we test the algorithms on nonsymmetric matrices. We use the same experi-
mental settings as in previous tests, but we now set U \not = V so that A is nonsymmetric.
The results are shown in Figure 5.2. There is no substantial difference between the be-
havior of the algorithms on symmetric and nonsymmetric matrices, although we note
that the quality of the solutions computed by the Schur-based algorithms slightly
deteriorates in Figure 5.2 compared with the results in Figure 5.1.

5.2. Timings. In Figure 5.3 we gauge how the execution time of our MATLAB
implementations changes as the ratio k/n varies. In this experiment we consider the
matrix A in (1.1) for \alpha = 0.1, U = V , and n = 1000, 4000, 7000, and 10000. The
results reported here are for uij \sim \scrN (0, n - 2), but we have repeated the experiment
with uij \sim \scrU (0, n - 1) and found that the behavior of the methods does not change
significantly. As predicted by the analysis of the computational cost in section 4,
schur\.full is the only algorithm whose timings depend only on the order n of the
input matrix but not on the rank k of the perturbation. The methods that exploit the
structure of A, on the other hand, become slower as the ratio k/n grows. The fastest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 167ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 11

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(a) uij = vij ∼ N
(
0, n−2

)
, α = 1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(b) uij = vij ∼ U
(
0, n−1

)
, α = 1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(c) uij = vij ∼ U
(
0, n−1

)
, α = 0.1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(d) uij = vij ∼ U
(
0, n−1

)
, α = 0.001.

schur full schur k db prod k db prod struct

Fig. 5.1: Relative residual of algorithms for computing the square root. The matrix A has the
form (1.1) for n = 100, various choices of α, and V = U . The elements of U are drawn from different
distributions.

by U
(
0, n−1

)
, in Figure 5.1b. In these two figures α = 1 is used. In Figure 5.1c

and Figure 5.1d the matrix U has entries drawn from U
(
0, n−1

)
with α = 0.1 and

α = 0.001, respectively.
In Figure 5.1a and Figure 5.1b the relative residual of db prod struct is indis-

tinguishable from that of schur k and db prod k, which exploit the formula (1.9).
The relative residual of schur full, on the other hand, is about one and a half orders
of magnitude larger in both cases, and in fact schur full is the only algorithm that
produces a relative residual not of the same magnitude as α2(X)u; the reason for this
mild instability is not clear. In Figure 5.1c the performance of the algorithms does not

Fig. 5.1. Relative residual of algorithms for computing the square root. The matrix A has the
form (1.1) for n = 100, various choices of \alpha , and V = U . The elements of U are drawn from
different distributions.

of the four implementations is schur\.k, and its execution time never exceeds that
of schur\.full significantly. In this experiment db\.prod\.struct typically requires 7
iterations to converge and is the slowest, and db\.prod\.k typically requires 6 iterations
to converge and is just slightly slower than schur\.k.

We repeated the experiments with \alpha = 1 and obtained very similar results, al-
though on this simpler problem db\.prod\.k and db\.prod\.struct were usually faster
and required at most 2 and 3 iterations, respectively.

The picture is different for nonsymmetric matrices, as shown by Figure 5.4, which
reports the results of the same experiments for the matrix A of the form (1.1) with
n = 1000, 4000, 7000, and 10000, \alpha = 0.1, and U \not = V . The behavior of the algorithms
does not change significantly in this setting, although db\.prod\.k becomes the fastest

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

168 M. FASI, N. J. HIGHAM, AND X. LIU12 MASSIMILIANO FASI, NICHOLAS J. HIGHAM, AND XIAOBO LIU

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(a) uij , vij ∼ N
(
0, n−2

)
, α = 1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(b) uij , vij ∼ U
(
0, n−1

)
, α = 1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(c) uij , vij ∼ U
(
0, n−1

)
, α = 0.1.

0 0.2 0.4 0.6 0.8 1
10−17

10−16

10−15

10−14

10−13

k/n

(d) uij , vij ∼ U
(
0, n−1

)
, α = 0.001.

schur full schur k db prod k db prod struct

α2(X)u

Fig. 5.2: Relative residual of algorithms for computing the square root. The matrix A has the
form (1.1) for n = 100, various choices of α, and V ̸= U . The elements of U and V are drawn from
different distributions.

change much from that in Figure 5.1b when α decreases to 0.1. In Figure 5.1d we see
that if α = 0.001 then db prod struct shows signs of instability as k/n approaches 1,
while the other algorithms remain largely stable and schur full has relatively better
performance for small α. With the chosen values of α, the matrix A is very well con-
ditioned, as κ2(A) < 10. We repeated the experiment with the setting in Figure 5.1d
but further decreasing α to 10−6. In this case κ2(A) = O(n), and the algorithms
behaved as in Figure 5.1d.

Next we test the algorithms on nonsymmetric matrices. We use the same experi-
mental settings as in previous tests, but we now set U ̸= V so that A is nonsymmetric.

Fig. 5.2. Relative residual of algorithms for computing the square root. The matrix A has the
form (1.1) for n = 100, various choices of \alpha , and V \not = U . The elements of U and V are drawn from
different distributions.

method for all matrix sizes, schur\.k becomes the slowest by a considerable margin
for n = 1000, whereas db\.prod\.struct is typically the slowest for larger matrices.

We remark that in both cases, the new algorithms we discuss can be up to two
orders of magnitude faster than the traditional approach based on the Schur decom-
position, when the ratio k/n is below 1/10, which can be considered the typical range
for low-rank updates.

5.3. Positive definite matrices from applications. Now we compare the
structured iterations and the direct algorithms on three test matrices from machine
learning applications [1]. These are provided as part of the Lingvo framework for
TensorFlow [29] and are available on GitHub.3 The matrices, which are provided in

3https://github.com/tensorflow/lingvo/tree/4c5572b/lingvo/core/testdata.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://github.com/tensorflow/lingvo/tree/4c5572b/lingvo/core/testdata

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 169ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 13

0 0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

100

k/n

(a) n = 1000.

0 0.2 0.4 0.6 0.8 1
10−2

10−1

100

101

102

k/n

(b) n = 4000.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

103

k/n

(c) n = 7000.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

103

k/n

(d) n = 10000.

schur full schur k db prod k db prod struct

Fig. 5.3: Execution time (in seconds) of algorithms for computing the square root. The matrix A
has the form (1.1) for α = 0.1 and V = U . The elements of U are drawn from N

(
0, n−2

)
.

The results are shown in Figure 5.2. There is no substantial difference between the be-
havior of the algorithms on symmetric and nonsymmetric matrices, although we note
that the quality of the solutions computed by the Schur-based algorithms slightly
deteriorates in Figure 5.2 compared with the results in Figure 5.1.

5.2. Timings. In Figure 5.3 we gauge how the execution time of our MATLAB
implementations changes as the ratio k/n varies. In this experiment we consider the
matrix A in (1.1) for α = 0.1, U = V , and n = 1000, 4000, 7000, and 10000. The
results reported here are for uij ∼ N (0, n−2), but we have repeated the experiment
with uij ∼ U(0, n−1) and found that the behavior of the methods does not change
significantly. As predicted by the analysis of the computational cost in section 4,
schur full is the only algorithm whose timings depend only on the order n of the
input matrix but not on the rank k of the perturbation. The methods that exploit the

Fig. 5.3. Execution time (in seconds) of algorithms for computing the square root. The matrix
A has the form (1.1) for \alpha = 0.1 and V = U . The elements of U are drawn from \scrN (0, n - 2).

binary32 format, are formed by accumulating matrix products of the form (2.1) for
\alpha = 0, and thus they are real and symmetric but are numerically indefinite because
of rounding errors in the computation, having small negative real eigenvalues (see
Table 5.1). We do not have access to the terms Gs in (2.1) used to generate the test
matrices, and for the sake of our experiment we recover them from the test matrices
as we now explain.

By the spectral theorem, the symmetric test matrix Bi \in \BbbR n\times n can be decom-
posed as Q\Sigma QT , where Q \in \BbbR n\times n is orthogonal and \Sigma \in \BbbR n\times n is diagonal and
has diagonal elements sorted in decreasing order. Let us now define the matrix
\widetilde Bi = Qt\Sigma tQ

T
t , where Qt \in \BbbR n\times t collects the first t columns of Q and \Sigma t \in \BbbR t\times t

is the leading principal submatrix minor of \Sigma of order t. In other words, \widetilde Bi approxi-
mates Bi by truncating its spectral decomposition to rank t. By taking G = Qt\Sigma t

1/2,
we can rewrite this approximation as GGT = \widetilde Bi \approx Bi, which is implicitly of the form\sum t

s=1 GsG
T
s in (2.1). We choose t according to some tolerance \varepsilon > 0 such that all ei-

genvalues of Bi \in \BbbR n\times n not less than \varepsilon are retained in \Sigma t \in \BbbR t\times t. In the experiments
we consider two different choices of the tolerance: \varepsilon 1 = 0.1 and \varepsilon 2 = n3/2u32.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

170 M. FASI, N. J. HIGHAM, AND X. LIU14 MASSIMILIANO FASI, NICHOLAS J. HIGHAM, AND XIAOBO LIU

0 0.2 0.4 0.6 0.8 1
10−3

10−2

10−1

100

k/n

(a) n = 1000.

0 0.2 0.4 0.6 0.8 1
10−2

10−1

100

101

102

k/n

(b) n = 4000.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

103

k/n

(c) n = 7000.

0 0.2 0.4 0.6 0.8 1
10−1

100

101

102

103

k/n

(d) n = 10000.

schur full schur k db prod k db prod struct

Fig. 5.4: Execution time (in seconds) of algorithms for computing the square root. The matrix A
has the form (1.1) for α = 0.1 and V ̸= U . The elements of U and V are drawn from N

(
0, n−2

)
.

structure of A, on the other hand, become slower as the ratio k/n grows. The fastest
of the four implementations is schur k, and its execution time never exceeds that
of schur full significantly. In this experiment db prod struct typically requires 7
iterations to converge and is the slowest, and db prod k typically requires 6 iterations
to converge and is just slightly slower than schur k.

We repeated the experiments with α = 1 and obtained very similar results, al-
though on this simpler problem db prod k and db prod struct were usually faster
and required at most 2 and 3 iterations, respectively.

The picture is different for nonsymmetric matrices, as shown by Figure 5.4, which
reports the results of the same experiments for the matrix A of the form (1.1) with
n = 1000, 4000, 7000, and 10000, α = 0.1, and U ̸= V . The behavior of the algorithms
does not change significantly in this setting, although db prod k becomes the fastest

Fig. 5.4. Execution time (in seconds) of algorithms for computing the square root. The matrix
A has the form (1.1) for \alpha = 0.1 and V \not = U . The elements of U and V are drawn from \scrN (0, n - 2).

In Table 5.1 we list some important characteristics of the original test matrices,
which we denote by B1, B2, and B3, and our approximations to them, which we
denote by \widetilde B1, \widetilde B2, and \widetilde B3, respectively.

We examine the performance of the algorithms for computing the principal square
root of Ai = \alpha In+ \widetilde Bi in binary32 arithmetic, where \alpha is a positive real constant chosen
so that the smallest eigenvalue of Ai is positive, which implies that Ai is positive
definite. Given that practical values of the regularizing scalar \alpha are not mentioned in
[1], in the experiments we test three choices: \alpha = 10 - 6, 10 - 3, and 1.

The results are given in Table 5.2, and Figure 5.5 presents the same data pictori-
ally. The matrices do not appear in the same order in the two panels of Figure 5.5; they
are grouped by the value of \alpha in Figure 5.5(a) and by size and rank in Figure 5.5(b).

All the methods except db\.prod\.struct converge for all test matrices with rela-
tive residual of the order \alpha 2(A

1/2)u32 in most cases, which indicates good numerical
stability. In general, db\.prod\.k gives the solution that has the smallest residual;
the other iterative method, db\.prod\.struct computes an unsatisfactory solution for

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 171

Table 5.1
Characteristics of the test matrices provided as part of the Lingvo framework and our approx-

imations to them. For the test matrices Bi we report the size, n, the smallest and the largest
eigenvalues \lambda \mathrm{m}\mathrm{i}\mathrm{n} and \lambda \mathrm{m}\mathrm{a}\mathrm{x} computed by the MATLAB eig function using binary32 arithmetic, and

the numerical rank r as returned by the MATLAB function rank. For the approximations \widetilde Bi we
report the order ti of \Sigma t in the truncated spectral decomposition with tolerance \varepsilon i, as discussed in
section 5.3.

n \lambda \mathrm{m}\mathrm{i}\mathrm{n} \lambda \mathrm{m}\mathrm{a}\mathrm{x} r \varepsilon 1 t1 \varepsilon 2 t2

B1 1024 - 1.3\times 10 - 2 7.8\times 104 20 \widetilde B1 1.0\times 10 - 1 82 2.0\times 10 - 3 128

B2 512 - 2.4\times 10 - 4 5.6\times 103 173 \widetilde B2 1.0\times 10 - 1 221 6.9\times 10 - 4 418

B3 512 - 1.9\times 10 - 4 1.8\times 103 243 \widetilde B3 1.0\times 10 - 1 177 6.9\times 10 - 4 511

Table 5.2
Relative residual and execution time (in seconds) of algorithms for computing the square root.

The matrices are those in Table 5.1.

\alpha = 10 - 6 \alpha = 10 - 3 \alpha = 1
t Method

Res Time Res Time Res Time

B1 82 schur\.full 1\times 10 - 6 5\times 10 - 2 1\times 10 - 6 5\times 10 - 2 2\times 10 - 6 4\times 10 - 2

schur\.k 9\times 10 - 7 2\times 10 - 3 9\times 10 - 7 1\times 10 - 3 1\times 10 - 6 1\times 10 - 3

db\.prod\.k 4\times 10 - 7 6\times 10 - 3 3\times 10 - 7 6\times 10 - 3 5\times 10 - 7 5\times 10 - 3

db\.prod\.struct 1\times 10 - 1 5\times 10 - 3 1\times 10 - 4 3\times 10 - 3 2\times 10 - 7 3\times 10 - 3

128 schur\.full 2\times 10 - 6 4\times 10 - 2 2\times 10 - 6 4\times 10 - 2 2\times 10 - 6 4\times 10 - 2

schur\.k 2\times 10 - 6 2\times 10 - 3 9\times 10 - 7 2\times 10 - 3 2\times 10 - 6 2\times 10 - 3

db\.prod\.k 5\times 10 - 7 1\times 10 - 2 4\times 10 - 7 1\times 10 - 2 5\times 10 - 7 1\times 10 - 2

db\.prod\.struct 1\times 10 - 1 8\times 10 - 3 1\times 10 - 4 7\times 10 - 3 4\times 10 - 7 1\times 10 - 2

B2 221 schur\.full 2\times 10 - 6 9\times 10 - 3 1\times 10 - 6 8\times 10 - 3 1\times 10 - 6 8\times 10 - 3

schur\.k 1\times 10 - 6 3\times 10 - 3 2\times 10 - 6 3\times 10 - 3 9\times 10 - 7 3\times 10 - 3

db\.prod\.k 4\times 10 - 7 2\times 10 - 2 8\times 10 - 8 2\times 10 - 2 4\times 10 - 7 2\times 10 - 2

db\.prod\.struct 1\times 10 - 1 2\times 10 - 2 1\times 10 - 4 1\times 10 - 2 5\times 10 - 7 1\times 10 - 2

418 schur\.full 2\times 10 - 6 9\times 10 - 3 2\times 10 - 6 8\times 10 - 3 2\times 10 - 6 8\times 10 - 3

schur\.k 7\times 10 - 6 8\times 10 - 3 6\times 10 - 6 8\times 10 - 3 6\times 10 - 6 8\times 10 - 3

db\.prod\.k 4\times 10 - 7 4\times 10 - 2 7\times 10 - 8 4\times 10 - 2 4\times 10 - 7 4\times 10 - 2

db\.prod\.struct 1\times 10 - 1 6\times 10 - 2 1\times 10 - 4 4\times 10 - 2 5\times 10 - 7 4\times 10 - 2

B3 177 schur\.full 2\times 10 - 6 9\times 10 - 3 1\times 10 - 6 8\times 10 - 3 3\times 10 - 6 8\times 10 - 3

schur\.k 1\times 10 - 6 2\times 10 - 3 1\times 10 - 6 2\times 10 - 3 7\times 10 - 7 2\times 10 - 3

db\.prod\.k 3\times 10 - 7 1\times 10 - 2 1\times 10 - 7 1\times 10 - 2 2\times 10 - 7 1\times 10 - 2

db\.prod\.struct 1\times 10 - 1 1\times 10 - 2 1\times 10 - 4 9\times 10 - 3 3\times 10 - 7 9\times 10 - 3

511 schur\.full 2\times 10 - 6 8\times 10 - 3 2\times 10 - 6 9\times 10 - 3 3\times 10 - 6 8\times 10 - 3

schur\.k 3\times 10 - 6 1\times 10 - 2 3\times 10 - 6 1\times 10 - 2 1\times 10 - 6 1\times 10 - 2

db\.prod\.k 3\times 10 - 7 8\times 10 - 2 1\times 10 - 7 8\times 10 - 2 2\times 10 - 7 8\times 10 - 2

db\.prod\.struct 1\times 10 - 1 1\times 10 - 1 1\times 10 - 4 6\times 10 - 2 3\times 10 - 7 6\times 10 - 2

\alpha = 10 - 6 and \alpha = 10 - 3, but for \alpha = 1 its performance is on par with that of
db\.prod\.k.

In terms of timings, schur\.full is by far the slowest choice for B1, but becomes
comparable with db\.prod\.k and db\.prod\.struct for B2 and B3 when the rank of \widetilde Bi

is moderate compared with the size. schur\.k is the fastest method, while its advan-
tage over db\.prod\.k and db\.prod\.struct becomes negligible when \widetilde Bi has low rank.
The execution time of the two iterative methods db\.prod\.k and db\.prod\.struct is
similar on most of the test matrices. Again, we observe that exploiting the structure
of A delivers a significant performance improvement when k \ll n, in line with that
suggested by the cost comparison in Table 4.1.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

172 M. FASI, N. J. HIGHAM, AND X. LIUROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 17

10−8

10−7

10−6

10−5

10−4

10−3

10−2

10−1

α = 10−6 α = 10−3 α = 100

(a) Residual.

10−3

10−2

10−1

t1 t2 t1 t2 t1 t2

B1 B2 B3

(b) Timings.

schur full schur k db prod k db prod struct

Fig. 5.5: Relative residual (left) and execution time in seconds (right) of algorithms for computing
the square root. The matrices are those in Table 5.1; they are grouped by value of α in the plot
on the left, and by matrix in the plot on the right, where the two values of t for a matrix Bi are
separated by a dotted line.

6. Concluding remarks. We have investigated numerical methods for comput-
ing roots of a matrix A = αIn + UV ∗, where U and V have rank k ≤ n. We derived
a new formula for A1/p that has the advantage over the existing formula from Theo-
rem 1.2 of not requiring that V ∗U be nonsingular. Focusing on the square root, we
have also derived a new structured DB iteration that exploits the low-rank structure
of UV ∗.

Our numerical experiments confirm that when k ≪ n, exploiting the structure
yields algorithms that are much more efficient than simply applying the Schur method
to A. If the Schur decomposition can be computed then using the Schur method to
evaluate (1.9) is our preferred method overall. Otherwise, we recommend the use of
the DB iteration, either in its structured form or as an unstructured algorithm to
compute the k × k square root appearing in (1.9).

Acknowledgement. We thank the referees for their helpful comments on the
manuscript.

REFERENCES

[1] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, Scalable second order optimization
for deep learning, preprint, arXiv:2002.09018v2 [cs.LG], 2020, https://arxiv.org/abs/2002.
09018. Revised March 2021.

[2] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer, Low-rank updates of ma-
trix functions II: Rational Krylov methods, SIAM J. Numer. Anal., 59 (2021), p. 1325–1347,
https://doi.org/10.1137/20m1362553.

[3] B. Beckermann, D. Kressner, and M. Schweitzer, Low-rank updates of matrix functions,
SIAM J. Matrix Anal. Appl., 39 (2018), p. 539–565, https://doi.org/10.1137/17m1140108.

[4] D. S. Bernstein and C. F. V. Loan, Rational matrix functions and rank-1 updates, SIAM J.
Matrix Anal. Appl., 22 (2000), pp. 145–154, https://doi.org/10.1137/S0895479898333636.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to nu-

Fig. 5.5. Relative residual (left) and execution time in seconds (right) of algorithms for com-
puting the square root. The matrices are those in Table 5.1; they are grouped by the value of \alpha in
the plot on the left, and by matrix in the plot on the right, where the two values of t for a matrix
Bi are separated by a solid gray line.

We conclude by mentioning that we derived, implemented, and tested the struc-
tured version of other variants of the Newton iteration, including the incremental form
of Iannazzo [21] and the Newton--Schulz iteration. We found that their performance
is similar to that of the structured DB iteration in product form.

6. Concluding remarks. We have investigated numerical methods for com-
puting roots of a matrix A = \alpha In + UV \ast , where U and V have rank k \leq n. We
derived a new formula for A1/p that has the advantage over the existing formula from
Theorem 1.2 of not requiring that V \ast U be nonsingular. Focusing on the square root,
we have also derived a new structured DB iteration that exploits the low-rank struc-
ture of UV \ast .

Our numerical experiments confirm that when k \ll n, exploiting the structure
yields algorithms that are much more efficient than simply applying the Schur method
to A. If the Schur decomposition can be computed then using the Schur method to
evaluate (1.9) is our preferred method overall. Otherwise, we recommend the use of
the DB iteration, either in its structured form or as an unstructured algorithm to
compute the k \times k square root appearing in (1.9).

Acknowledgement. We thank the referees for their helpful comments on the
manuscript.

REFERENCES

[1] R. Anil, V. Gupta, T. Koren, K. Regan, and Y. Singer, Scalable Second Order Optimization
for Deep Learning, preprint, [cs.LG], 2021.

[2] B. Beckermann, A. Cortinovis, D. Kressner, and M. Schweitzer, Low-rank updates of
matrix functions II: Rational Krylov methods, SIAM J. Numer. Anal., 59 (2021), pp.
1325--1347, https://epubs.siam.org/doi/10.1137/20M1362553.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://epubs.siam.org/doi/10.1137/20M1362553

ROOTS OF LOW-RANK PERTURBATIONS OF SCALED IDENTITY 173

[3] B. Beckermann, D. Kressner, and M. Schweitzer, Low-rank updates of matrix functions,
SIAM J. Matrix Anal. Appl., 39 (2018), pp. 539--565, https://epubs.siam.org/doi/10.1137/
17M1140108.

[4] D. S. Bernstein and C. F. Van Loan, Rational matrix functions and rank-1 updates, SIAM J.
Matrix Anal. Appl., 22 (2000), pp. 145--154, https://doi.org/10.1137/S0895479898333636.

[5] J. Bezanson, A. Edelman, S. Karpinski, and V. B. Shah, Julia: A fresh approach to nu-
merical computing, SIAM Rev., 59 (2017), pp. 65--98, https://doi.org/10.1137/141000671.

[6] \r A. Bj\"orck and S. Hammarling, A Schur method for the square root of a matrix , Lin-
ear Algebra Appl., 52/53 (1983), pp. 127--140, https://doi.org/10.1016/0024-3795(83)
80010-X.

[7] S. H. Cheng, N. J. Higham, C. S. Kenney, and A. J. Laub, Approximating the logarithm
of a matrix to specified accuracy, SIAM J. Matrix Anal. Appl., 22 (2001), pp. 1112--1125,
https://doi.org/10.1137/S0895479899364015.

[8] E. Deadman, N. J. Higham, and R. Ralha, Blocked Schur algorithms for computing the
matrix square root , in Applied Parallel and Scientific Computing: 11th International Con-
ference, PARA 2012, Helsinki, Finland, Lecture Notes in Comput, Sci. 7782, P. Manninen
and P. \"Oster, eds., Springer, Berlin, 2013, pp. 171--182, https://doi.org/10.1007/978-3-
642-36803-5\.12.

[9] E. D. Denman and A. N. Beavers Jr, The matrix sign function and computations in sys-
tems, Appl. Math. Comput., 2 (1976), pp. 63--94, https://doi.org/10.1016/0096-3003(76)
90020-5.

[10] M. Fasi and N. J. Higham, Multiprecision algorithms for computing the matrix loga-
rithm, SIAM J. Matrix Anal. Appl., 39 (2018), pp. 472--491, https://doi.org/10.1137/
17M1129866.

[11] G. H. Golub and C. F. Van Loan, Matrix Computations. 4th ed., Johns Hopkins University
Press, Baltimore, MD, 2013.

[12] F. Greco and B. Iannazzo, A binary powering Schur algorithm for computing primary ma-
trix roots, Numer. Algorithms, 55 (2010), pp. 59--78, https://doi.org/10.1007/s11075-009-9
357-1.

[13] C.-H. Guo and N. J. Higham, A Schur--Newton method for the matrix pth root and its inverse,
SIAM J. Matrix Anal. Appl., 28 (2006), pp. 788--804, https://doi.org/10.1137/050643374.

[14] V. Gupta, T. Koren, and Y. Singer, Shampoo: Preconditioned stochastic ten-
sor optimization, Proc. Mach. Learn. Res. (PMLR), 80 (2018), pp. 1842--1850,
http://proceedings.mlr.press/v80/gupta18a.html.

[15] L. A. Harris, Computation of functions of certain operator matrices, Linear Algebra Appl.,
194 (1993), pp. 31--34, https://doi.org/10.1016/0024-3795(93)90111-Z.

[16] N. J. Higham, Computing the polar decomposition---with applications, SIAM J. Sci. Statist.
Comput., 7 (1986), pp. 1160--1174, https://doi.org/10.1137/0907079.

[17] N. J. Higham, Newton's method for the matrix square root , Math. Comp., 46 (1986), pp.
537--549, https://doi.org/10.1090/S0025-5718-1986-0829624-5.

[18] N. J. Higham, Computing real square roots of a real matrix , Linear Algebra Appl., 88/89
(1987), pp. 405--430, https://doi.org/10.1016/0024-3795(87)90118-2.

[19] N. J. Higham, Functions of Matrices: Theory and Computation, Society for Indus-
trial and Applied Mathematics, Philadelphia, PA, USA, 2008, https://doi.org/10.1137/
1.9780898717778.

[20] R. A. Horn and C. R. Johnson, Matrix Analysis, 2nd ed., Cambridge University Press,
Cambridge, UK, 2013.

[21] B. Iannazzo, A note on computing the matrix square root , Calcolo, 40 (2003), pp. 273--283,
https://doi.org/10.1007/s10092-003-0079-9.

[22] B. Iannazzo and C. Manasse, A Schur logarithmic algorithm for fractional
powers of matrices, SIAM J. Matrix Anal. Appl., 34 (2013), pp. 794--813,
https://doi.org/10.1137/120877398.

[23] C. Ionescu, O. Vantzos, and C. Sminchisescu, Matrix backpropagation for deep networks
with structured layers, in Proceedings of the IEEE International Conference on Computer
Vision, 2015, pp. 2965--2973, https://openaccess.thecvf.com/content iccv 2015/papers/
Ionescu Matrix Backpropagation for ICCV 2015 paper.pdf.

[24] T.-Y. Lin, Higher-Order Representations for Visual Recognition, Ph.D. thesis, College of In-
formation and Computer Sciences, University of Massachusetts Amherst, Massachusetts,
USA, 2020, https://doi.org/10.7275/wsca-m707.

[25] Multiprecision Computing Toolbox , Advanpix LLC, http://www.advanpix.com.
[26] Y. Nakatsukasa, Fast and Stable Randomized Low-Rank Matrix Approximation, preprint,

arXiv:2009.11392 [math.NA], 2020.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://epubs.siam.org/doi/10.1137/17M1140108
https://epubs.siam.org/doi/10.1137/17M1140108
https://doi.org/10.1137/S0895479898333636
https://doi.org/10.1137/141000671
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1016/0024-3795(83)80010-X
https://doi.org/10.1137/S0895479899364015
https://doi.org/10.1007/978-3-642-36803-5_12
https://doi.org/10.1007/978-3-642-36803-5_12
https://doi.org/10.1016/0096-3003(76)90020-5
https://doi.org/10.1016/0096-3003(76)90020-5
https://doi.org/10.1137/17M1129866
https://doi.org/10.1137/17M1129866
https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1007/s11075-009-9357-1
https://doi.org/10.1137/050643374
http://proceedings.mlr.press/v80/gupta18a.html
https://doi.org/10.1016/0024-3795(93)90111-Z
https://doi.org/10.1137/0907079
https://doi.org/10.1090/S0025-5718-1986-0829624-5
https://doi.org/10.1016/0024-3795(87)90118-2
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1137/1.9780898717778
https://doi.org/10.1007/s10092-003-0079-9
https://doi.org/10.1137/120877398
https://openaccess.thecvf.com/content_iccv_2015/papers/Ionescu_Matrix_Backpropagation_for_ICCV_2015_paper.pdf
https://openaccess.thecvf.com/content_iccv_2015/papers/Ionescu_Matrix_Backpropagation_for_ICCV_2015_paper.pdf
https://doi.org/10.7275/wsca-m707
http://www.advanpix.com
https://arxiv.org/abs/2009.11392

174 M. FASI, N. J. HIGHAM, AND X. LIU

[27] G. Schulz, Iterative Berechung der reziproken Matrix , Z Angew. Math. Mech., 13 (1933), pp.
57--59, https://doi.org/10.1002/zamm.19330130111.

[28] W. Shao, H. Yu, Z. Zhang, H. Xu, Z. Li, and P. Luo, BWCP: Probabilistic Learning-to-
Prune Channels for ConvNets via Batch Whitening, preprint, arXiv:2105.06423 [cs.LG],
2021.

[29] J. Shen et al., Lingvo: A Modular and Scalable Framework for Sequence-to-Sequence Modeling,
preprint, arXiv:1902.08295 [cs.LG], 2019.

[30] S. Shumeli, P. Drineas, and H. Avron, Low-Rank Updates of Matrix Square Roots, preprint,
arXiv:2201.13156 [math.NA], 2022.

[31] M. I. Smith, A Schur algorithm for computing matrix pth roots, SIAM J. Matrix Anal. Appl.,
24 (2003), pp. 971--989, https://doi.org/10.1137/S0895479801392697.

[32] Y. Song, N. Sebe, and W. Wang, Fast Differentiable Matrix Square Root , preprint,
arXiv:2201.08663 [cs.CV], 2022.

[33] Symbolic Math Toolbox , The MathWorks, Inc., Natick, MA, USA, http://www.mathworks.
co.uk/products/symbolic/.

[34] D. S. Watkins, Understanding the QR algorithm, SIAM Rev., 24 (1982), pp. 427--440,
https://doi.org/10.1137/1024100.

[35] D. S. Watkins, The QR algorithm revisited , SIAM Rev., 50 (2008), pp. 133--145,
https://doi.org/10.1137/060659454.

[36] D. S. Watkins, Francis's algorithm, Amer. Math. Monthly, 118 (2011), pp. 387--403,
https://doi.org/10.4169/amer.math.monthly.118.05.387.

[37] C. Ye, X. Zhou, T. McKinney, Y. Liu, Q. Zhou, and F. Zhdanov, Exploiting Invariance in
Training Deep Neural Networks, preprint, arXiv:2103.16634v2 [cs.CV], 2021.

Copyright © by SIAM. Unauthorized reproduction of this article is prohibited.

D
ow

nl
oa

de
d

02
/2

7/
23

 to
 1

54
.5

9.
12

4.
59

 .
R

ed
is

tr
ib

ut
io

n
su

bj
ec

t t
o

SI
A

M
 li

ce
ns

e
or

 c
op

yr
ig

ht
; s

ee
 h

ttp
s:

//e
pu

bs
.s

ia
m

.o
rg

/te
rm

s-
pr

iv
ac

y

https://doi.org/10.1002/zamm.19330130111
https://arxiv.org/abs/2105.06423
https://arxiv.org/abs/1902.08295
https://arxiv.org/abs/2201.13156
https://doi.org/10.1137/S0895479801392697
https://arxiv.org/abs/2201.08663
http://www.mathworks.co.uk/products/symbolic/
http://www.mathworks.co.uk/products/symbolic/
https://doi.org/10.1137/1024100
https://doi.org/10.1137/060659454
https://doi.org/10.4169/amer.math.monthly.118.05.387
https://arxiv.org/abs/2103.16634v2

	Introduction
	Applications
	Newton iterations
	Cost comparison of the methods
	Numerical experiments
	Quality
	Timings
	Positive definite matrices from applications

	Concluding remarks
	References

