12 - November 1990 SIAM NEWS

Is Fast Matrix Multiplication of Practical Use?

By Nicholas J. Higham

A fast matrix multiplication method forms
the product of two n x n matrices in O(n®)
arithmetic operations where ® < 3. Suchamethod
is more efficient asymptotically than direct use
of the definition

=Fap @

(4B);= & asby

which requires O(n’) operations. Several fast
matrix multiplication methods are known, but
in view of the possibility of large constant
multipliers in the operation counts, it is neces-
sary to question the practical use of such meth-
ods. Many researchers have assumed that they
have none, but recent evidence has shown this
to be untrue, at least for one method.

The History of Matrix Multiplication

The English mathematician Joseph Sylvester
introduced the name “matrix” for a rectangular
array of numbers in 1850. Matrix algebra was
developed by Sylvester and a friend, the mathe-
matician Arthur Cayley. They regarded a ma-

Py =@y, +a,)(b,, +by),

Py =(ay +ayby,
=a,,(b, = by),

Py= by —by),

ps=(a, +ayb,,

Pe=(ay =a,)(by, +byy).

Py =(a,, =) by +byy),

C=\p,+p,—ps+p, Py +ps
Py+p, P+ P3=Py+ P

Figure 1. Strassen’s formulas for C = AB.

1d more. It gives you sophns’ucated
graph s, and can cunven L your equatlons

trix as representing a linear transformation,
and consideration of products of linear trans-
formations led to the definition (1) of matrix
multiplication.

For more than a century this definition pro-
vided the only known method for multiplying
matrices. In 1967, however, Shmuel Winograd
found, to the surprise of many, a way to ex-
change half the multiplications for additions in
the basic formula [17]. His method rests on the
identification of certain inner products that can
be computed and reused. Winograd’s paper
generated immediate practical interest because
floating-point multiplication was typically two
or three times slower than floating-point addi-
tion on the computers of the 1960s. (On today’s
machines these two operations are usually similar
in cost.)

Shortly after Winograd’s discovery, Volker
Strassen astounded the computer science com-
munity by finding a method for matrix multipli-
cation that requires O(n'%") operations (log,7
~2.807). A variant of this technique can be used
to compute A, and thereby to solve Ax=b,
both in O(n'%:7) operations. (Hence the title of
Strassen’s 1969 paper [16], which refers to the
question of whether Gaussian elimination is
asymptotically optimal for solving linear sys-
tems.)

Strassen’s method is based on a circuitous
way to form the product of a pair of 2x2
matrices in seven multiplications and 18 addi-
tions, instead of the usual eight multiplications
and four additions; see Figure 1 (a fairly natural
derivation is given in [18]). As a means of
multiplying 2 x 2 matrices, these formulas have
nothing to recommend them. Strassen observed,
however, that the formulas remain valid when
a, and b are matrices. Thus, general nx n
matrices A and B can be multiplied as follows:
Partition A and B into four equally sized blocks
(if n is even) and apply the formula to the 2 x 2

3

2.8[—

2.4(—

[\ |

1965 1970 1975
Figure 2. Exponent versus year of publication.
block product; this involves seven half-sized
matrix multiplications and 18 half-sized matrix
additions. For large n, these matrix additions are
of negligible cost compared with the matrix
multiplications, and a computational saving of
about 12% is achieved.

Strassen recognized that the half-sized ma-
trix multiplications can be carried out by ap-
plying the very same method recursively, with
a 12% saving on each level of the recursion. It
is this recursive, divide-and-conquer applica-
tion that results in the lowering of the expo-
nent. In the exponent log,7, the 2’ and the ‘7’
arise from the use of a method for multiplying
2 x 2 matrices in seven multiplications. In
addition to a lower exponent, the method has a
reasonable constant: Strassen showed that his
method requires at most 4.7x'°%7 arithmetic
operations.

th your choice of exact or arbi-
ary precision arithmetic, and gives

u results at speeds from IO to 100 times
 traditional methods.

~ All this power is remarkably easy to use. With
the help of the User’s Guide, extensive on-line docu- -
mentation, executable examples and demonstrations,
and the Quick Reference Card, a beginning MACSYMA
user can quickly become proficient, tackling problems
that m:ght otherwise have been too difficult or ume-

consuming.

‘Whatever your application
science, economics or pure math — your work is too
important to trust to any other math software. You

engineering,

deserve MACSYMA.

More than just a y

for domg

xcs by computer it'’s the power tool for mathematlcs.‘ .

ymbollcs Inc.
MACSYMA Division

ive | Park East, Burllngton MA 01803 USA 1-800-622~7962 (in Massachuseﬂs 617-221- 1250)

f Symbolics, Inc. TeX is atra

1980 1985 1990

Strassen’s paper raised the question “what is
the minimum exponent ® such that matrix
multiplication can be done in O(n®) operations?”
Clearly, w =2, since each element of
each matrix must take part in at least one opera-
tion. Despite intensive research, the minimum @
(or a limiting value) is still unknown. The
current “world record” is 2.376 [4], and some
hope is expressed in [4] of reaching “the elusive
®=2."” Finding an asymptotically optimal
algorithm for matrix multiplication has been
described as “one of the most famous outstand-
ing problems of computer science” [15, p.
533].

One approach to lowering the exponent is to
search for p and g such that two p x p matrices
can be multiplied in ¢ scalar multiplications
and log q<log27 Victor Pan discovered a
suitable pair—p =70, g = 143,640—in 1978
[13]. This and subsequent lowerings of the
exponent involve sophisticated applications of
tensors and bilinear and trilinear forms; see
[14] for a survey of this work. A graph of
exponent versus time of publication is given in
Figure 2 (not all publications are represented in
the graph); the period from 1850 to 1964 has
been omitted to save space!

Implementation of Strassen’s Method

In addition to stimulating research in the
complexity of matrix multiplication, Stras-
sen’s paper led several authors to look at the
practical implementation of his method. Be-
fore a useful implementation can be attained, a
number of issues have to be addressed: how to
program the recursion, how best to handle
arbitrary values of n (since the basic method is
defined only for n a power of 2), and how to
deal with the extra storage required by the
method, among others.

Richard Brent [3] implemented Strassen’s
method in Algol-W on an IBM 360/67 com-
puter and obtained a speed increase over con-
ventional multiplication for » as small as 110,
but these timings were overshadowed by the
even better performance of Winograd’s method
for the values of n <300 considered. In [6, 9,
10] various implementation details of Stras-
sen’s method are investigated, but computer
timings are not presented.

Not until the recent work of David Bailey at
NASA Ames [1] was the practical utility of
Strassen’s method convincingly demonstrated.
Bailey implemented the method in Fortran 77
on a Cray 2 computer and obtained speedups
over conventional multiplication ranging from
1.45 for n = 128 t0 2.01 for n = 2,048 (although
35% of these speedups are due to Cray-specific
techniques). To achieve these speedups, Bailey
prematurely terminated the recursions in Stras-
sen’s method so as to minimize the bookkeep-
ing costs and to exploit the architecture of the
Cray 2—once the dimension reached 127 or
less, multiplications were performed by the
conventional method. In joint work with King
Lee and Horst Simon, Bailey has since devel-
oped a more sophisticated implementation of
Strassen’s method for the Cray 2 and the Cray
Y-MP [2]. This version handles arbitrary di-
mensions and has a reduced storage require-
ment.

In its bid for acceptance as a practical tool,
Strassen’s method needs to overcome a further
obstacle—the myth that it is unstable. An error
analysis of the method in [3] has often been
overlooked. That study, together with further
analysis in [11], dispels the myth. Strassen’s
method is not as stable as conventional multi-
plication (not surprisingly, in view of the for-
mulas underlying the method), but it is stable
enough to be a contender for practical use.

Large-Scale Computations
With the steady increases in computer proc-
essing power and storage, scientists are at-
tempting to solve larger and larger problems.
Continued on page 14

14 - November 1990 SIAM NEWS

Netlib News: Greetings

By Eric Grosse

This is the first of what will be a regular
series of columns, appearing four times a year,
about netlib. Never heard of it? Then read
“Distribution of Mathematical Software via
Electronic Mail,” by Jack J. Dongarra and Eric
Grosse (Communications of the ACM, Vol. 30,
1987, pages 403-407).

If that’s too much trouble, just send an e-
mail message containing the line “help” to the
Internet address netlib@research.att.com or
the uucp address uunet!research!netlib. A
few minutes later, if you have speedy mail con-
nections, you will receive information on how
to use netlib along with an overview of the
many mathematical software libraries and
databases in the collection.

Each column in this series will start with a
background discussion of how netlib is run,
and then address applications in other fields,
security horror stories, and other topics. The
second half of the column will briefly describe
recent additions to the collection and important
updates of old codes. If there are specific topics
you would like to see addressed in future
issues, let me know.

Strictly speaking, this column applies only
to the netlib running at the AT&T Bell Labora-

U.S. National Science Foundation provided an

Diego, is a package for solving elliptic partial
differential equations in general regions of the
plane. It features adaptive local mesh refine-
ment, multigrid iteration, andapseudo arclenglh

This library consists of a number of Fortran
files and a few C files, most of which (aside
from the graphics) are machine independent.
Since the package is rather large, it has been

early grant to help get us started and implicitl

helps by funding the national network. AT&T
has donated machine

option for
cies. The package includes an initial mesh
and several graphics packages. Full

tion facilities, and my time. Sequent gener-
ously loaned a machine, operated by Oak Ridge
National Laboratory, to support netlib. The
Norwegian government, through a grant to
Petter Bjgrstad, purchased a machine to pro-
vide service to Europe. The Association for
Computing Machinery agreed to the redistri-
bution of its Collected Algorithms, and algo-
rithms editor R.J. Renka arranged for prompt
updates. SIAM contributed its membership
database. To all these groups and the many
others who have contributed, the community
owes its thanks.

Naturally, this thanks should not be ex-
pressed in the form of a lawsuit. If you’re
unhappy with some piece of software, keep in
mind that none of the contributing organiza-
tions had anything to do with the content; even
the editors make no claims about the suitability
of the software for any purpose. That’s the
meaning of the disclaimer “Anything free comes
with no guarantee.”

On the other hand, don’t be completely
frightened off by this warning. The mathemati-
cal algomhms in nelllb include some of the

tories in New Jersey. If you’re ing the

most sophi d and robust methods to be

copy at Oak Ridge, or Oslo, or Wollongong, or
perhaps elsewhere, then the files either should
be there already or will show up shortly, when
our semi-automatic procedures have resyn-
chronized the collections.

This first column provides a nice opportu-
nity for a public thanks to our sponsors. The

found anywhere. Just remember that a healthy
skepticism is appropriate when you get soft-
ware from any source.

Recent Additions
PLTMG, version 6.0, written by Randy
Bank of the University of California at San

documentation can be obtained in the users’
guide, a recent volume in the SIAM Frontiers
in Applied Mathematics series (PLTMG: A
Software Package for Solving Elliptic Partial
Differential Equations, Users’ Guide 6.0, by
Randolph E. Bank).

made via ftp research.att.com, for
those who have Internet access. Log in as
anonymous and cd dist/pltmg. You must
uncompress the .Z files once you have a copy
of them. Someday we plan to make all of netlib

available by ftp.
Version 2.1 of the dhrystone benchmarks
in Ada, C, and Pascal is a new release from
Continued on page 16

Fast Matrix Multiplication,

continued from page 12

For example, John Brown of Multiflow Com-
puter and John Lewis of Boeing Computer
Services are both interested in solving dense
systems of linear equations of order 10,000 or
more with complex coefficient matrices; these
systems arise in the solution of integral equa-

ymptotic speedups in all the BLAS3, as shown
in [11], and hence in any algorithm that can be
expressed in terms of the BLAS3. Thus, Stras-
sen’s method has the potential for producing
useful speedups in many numerical algorithms.

An impressive example of the realization of
this potential can be found in the work of
Bailey, Lee, and Simon [2]. They substituted
thelr Strassen’s method code for the BLAS3

tions by boundary element tect A prom-

SGEMM and tested LAPACK’s

ising way to make such massive computations
efficient, or even just feasible, is to employ an
“asymptotically fast” algorithm. Here, the level
3 Basic Linear Algebra Subprograms (BLAS3)
[8] play an important role.

The BLAS3 are specifications of Fortran
programs for four main tasks: general matrix
multiplications, rank-r and rank-2r updates of
a symmetric matrix, multiplication by a trian-
gular matrix, and solution of triangular sys-
tems withmultiple right-hand sides. They provide
building blocks for a wide variety of numerical
algorithms; for example, they are used by
many of the routines in LAPACK [7]. Stras-
sen’s method, or any other fast matrix multi-
plication technique, can be used to produce as-

NSF-CBMS Regional Conference Series
in Probability and Statistics

Volume 2

AND

EMPIRICAL
PROCESSES:
THEORY

APPLICATIONS

and the

American Statistical Association

These lecture notes result from the NSF-CBMS
Regional Conference held at the University of
lowa in July 1988. Topics in abstract empirical
process theory are discussed in fourteen
sections—including symmetrization and
conditioning, chaining, packing and covering in
Euclidean spaces, stability, convex hulls,

Sponsored by the

Conference Board of the Mathematical Sciences
Supported by the

National Science Foundation

Published by the

Institute of Mathematical Statistics

David Pollard
Yale University

maximal inequalities, uniform laws of large
numbers, convergence in distribution and
almost sure representation, functional central
limit theorems, least absolute deviations
estimators for censored regressions, random
convex sets, estimation from censored data,
and biased sampling.

The Institute of Mathematical Statistics and the American Statistical Association are proud to copublish the NSF-CBMS
Regional Conference Series in Probability and Statistics. The volumes in this Series are based on the NSF-CBMS
regional research conferences and join SIAM’s NSF-CBMS Series in Applied Mathematics and AMS’s NSF-CBMS

Series in Mathematics.

IMS/ASA/CBMS Member Price
Institutional slandmg orders to this Series provide for advance notification of publication dates for each volume and

access to preput jon di of 20%. M

Prepaid orders for individual volumes and requests for standing order enrollment should be sent to:

Institute of Mathematical Statistics
3401 Investment Boulevard, Suite 7
Hayward, California 94545 (USA)

of IMS, ASA, and CBMS societies receive a 40% discount.

SGETRF. This routine performs LU factoriza-
tion of dense matrices using a block algorithm.
Using dimensions n < 2,048, Bailey, Lee,
and Simon obtained a maximum rate of com-
putation of 325 virtual megaflops on a Cray Y-
MP (single processor), as compared with 291
Mflops when a conventional matrix multiply
kemel was used. Here, “virtual” denotes that
the computational cost was overestimated as
2n/3 floating-point operations, which explains
the otherwise puzzling fact that the peak per-
formance of the machine (for one processor)
was exceeded!

It seems likely that fast methods for numeri-
cal computation will be more widely used in
the future. First, however, the numerical stabil-
ity of the methods needs to be proven, and
codes will have to be written carefully to
exploit particular computer architectures. A
step in this direction is the provision by two
supercomputer manufacturers of Fortran 77
implementations of Strassen’s method that are
tuned for their particular machines. IBM’s
ESSL library [12] contains codes for the IBM
3090, and Cray Research Inc. provides codes in
its UNICOS library [5] for Cray X-MP/Y-MP
and Cray 2 systems.

References

[11D.H. Bailey, Extra high speed matrix multipli-
cation on the Cray-2, SIAM J. Sci. Stat. Comput., 9
(1988), 603-607.

[2] D.H. Bailey, K. Lee, and H.D. Simon, Using
Strassen’s algorithm to accelerate the solution of lin-
ear. systems, Manuscript, 1990.

(3] R.P. Brent, Algorithms for matrix multiplica-
tion, Technical Report CS 157, Computer Science De-
partment, Stanford University, 1970.

[4]1D. Coppersmith and S. Winograd, Matrix multi-
phcan(m via arithmetic progression, Proceedings of
the Annual ACM ium of Theory
of Computing (1987), 1-6.

[5] Cray Research Inc., UNICOS Math and Scien-
tific Library Reference Manual, Number SR-2081.
Version 5.0 (March 1989).

[6]J. Cohen and M. Roth, On the implementation of
Strassen’s fast multiplication algorithm, Acta Infor-
matica, 6 (1976), 341-355.

[71J.W. Demmel, J.J. Dongarra, J.J. Du Croz, A.
Greenbaum, S.J. Hammarling, and D.C. Sorensen,
Prospectus for the development of a linear algebra
library for high-performance computers, Technical
Memorandum No. 97, Mathematics and Computer
Sciences Division, Argonne National Laboratory, II-
linois, 1987.

[8] J.J. Dongarra, J.J. Du Croz, LS. Duff, and S.J.
Hammarling, A ser of Level 3 basic linear algebra
subprograms, Preprint No. 1, Mathematics and
Computer Science Division, Argonne National Labo-
ratory, 1988.

[9] P.C. Fischer, Further schemes for combining
matrix algorithms, in Automata, Languages and Pro-
gramming,J. Loeckx, ed., Lecture Notes in Computer
Science 14, Springer Verlag, Berlin (1974), 428-436.

[10] P.C. Fischer and R.L. Probert, Efficient proce-
dures for using matrix algorithms, in Automata, Lan-
guages and Programming, J. Loeckx, ed., Lecture
Notes in Computer Science 14, Springer Verlag,
Berlin, (1974), 413-427.

[111N.J. Higham, Exploiting fast matrix multipli-
cation within the level 3 BLAS, Technical Report 89-
984, Department of Computer Science, Cornell Uni-
versity, 1989; to appear in ACM Trans. Math. Soft.

[12] IBM, Engineering and Scientific Subroutine
Library, Guide and Reference, Release 3, Fourth
Edition (Program Number 5668-863), 1988.

[13] V. Pan, Strassen algorithm is not optimal. Tri-
linear technique of aggregating, uniting, and cancel-
ing for constructing fast algorithms for matrix multi-
plication, Proc. 19th Annual Symposium on the Foun-
dations of Computer Science, Ann Arbor, MI (1978),
166-176.

(14] V. Pan, How can we speed up matrix multipli-
cation?, SIAM Review 26 (1984), 393-415.

[15] R. Sedgewick, Algorithms, Second Edition,
Addison-Wesley, Reading, Massachusetts, 1988.

(16] V. Strassen, Gaussian elimination is not opti-
mal, Numer. Math., 13 (1969), 354-356.

[171S. Winograd, A new algorithm for inner prod-
uct, IEEE Trans. Comput., C-18 (1968), 693-694.

[181G. Yuval, A simple proof of Strassen’s result,
Information Processing Letters, 7 (1978), 285-286.

NicholasJ. Higham is a member of the Department

of Mathematics at the University of Manchester,
h r, England.

	mm1.pdf
	mm2.pdf

