Stochastic Rounding and its Probabilistic Backward Error Analysis

Michael Connolly
Department of Mathematics
The University of Manchester

michael.connolly-3@manchester.ac.uk

02 March ’21, SIAM CSE
Collaborators

- Nick Higham
 University of Manchester

- Theo Mary
 Sorbonne Universités and CNRS

Stochastic rounding and its probabilistic backward error analysis,
\(\text{fl}(x \text{ op} y) = (x \text{ op} y)(1 + \delta), \quad |\delta| \leq u, \text{ op} \in \{+, -, \times, \}/ \)
\[\text{fl}(x \text{ op } y) = (x \text{ op } y)(1 + \delta), \quad |\delta| \leq u, \quad \text{op} \in \{+,-,\times,\div\} \]

Lemma (Higham (2002))

If \(|\delta_i| \leq u \) for \(i = 1 : n \), and \(nu < 1 \), then

\[
\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \leq \gamma_n,
\]

with

\[
\gamma_n := \frac{nu}{1 - nu} = nu + O(u^2).
\]
A probabilistic bound

\[\tilde{\gamma}_n(\lambda) := \exp \left(\frac{\lambda \sqrt{nu + nu^2}}{1 - u} \right) - 1 = \lambda \sqrt{nu} + O(u^2). \]

Theorem (Higham & Mary (2019))

Let \(\delta_1, \delta_2, \ldots, \delta_n \) be independent random variables of mean zero with \(|\delta_i| \leq u, i = 1 : n \). Then for any \(\lambda > 0 \) we have

\[\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \leq \tilde{\gamma}_n(\lambda) \]

which holds with probability at least

\[P(\lambda) = 1 - 2 \exp(-\lambda^2/2). \]
Stochastic rounding

Given adjacent floating-point numbers a, b and $x \in \mathbb{R}$ so that $a \leq x \leq b$, we have

$$\text{fl}(x) = \begin{cases} b \text{ with probability } p = (x - a)/(b - a), \\ a \text{ with probability } 1 - p. \end{cases}$$

- Called **Mode 1** stochastic rounding (SR).
- Gaining interest in machine learning.
Rounding errors

\[\text{fl}(x \text{ op } y) = (x \text{ op } y)(1 + \delta), \quad |\delta| \leq 2u, \text{ op } \in \{+,-,\times,1\} \]
Theorem (C, Higham & Mary, 2021)

The rounding errors $\delta_1, \delta_2, \ldots, \delta_n$ produced by stochastic rounding are mean independent, mean zero random variables such that

$$E(\delta_k) = E(\delta_k | \delta_{k-1}, \ldots, \delta_1) = 0.$$
A new theorem

Theorem (C, Higham & Mary, 2021)

Let $\delta_1, \delta_2, \ldots, \delta_n$ be mean independent random variables of mean zero with $|\delta_i| \leq u$, $i = 1 : n$. Then for any $\lambda > 0$ we have

$$\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \leq \tilde{\gamma}_n(\lambda)$$

which holds with probability at least

$$P(\lambda) = 1 - 2 \exp(-\lambda^2/2).$$
A new theorem

Theorem (C, Higham & Mary, 2021)

Let \(\delta_1, \delta_2, \ldots, \delta_n \) be mean independent random variables of mean zero with \(|\delta_i| \leq u, i = 1 : n.\) Then for any \(\lambda > 0 \) we have

\[
\prod_{i=1}^{n} (1 + \delta_i) = 1 + \theta_n, \quad |\theta_n| \leq \tilde{\gamma}_n(\lambda)
\]

which holds with probability at least

\[
P(\lambda) = 1 - 2 \exp(-\lambda^2/2).
\]

- SR satisfies these assumptions (with the substitution \(u \leftarrow 2u \)).
- Rule of thumb becomes a rule!
Example: inner product

- Want to compute $y = a^T b$, $a, b \in \mathbb{R}^n$.

- When using SR, we have the backward error result:

 $$
 \hat{y} = (a + \Delta a)^T b, \\
 |\Delta a| \leq \tilde{\gamma}_n(\lambda)|a| \approx \lambda \sqrt{n u} |a|.
 $$

- The result holds with probability at least $1 - 2n \exp(-\lambda^2/2)$.

- Compare with the worst case bound for round to nearest (RTN)

 $$
 |\Delta a| \leq \gamma_n |a| \approx nu |a|.
 $$
Numerical experiments

- Compute inner product $y = a^T b$ for a, b sampled uniformly from $[0, 1]$.

- Work in fp16 ($u = 2^{-11}$).

- Use the implementation of SR provided by chop (Higham and Pranesh, 2019).

- https://github.com/higham/chop
Numerical experiments

Michael Connolly

Stochastic Rounding
As the intermediate value $y_i = y_{i-1} + a_i b_i$ grows, the spacing between nearby floating-point values increases.

We reach a point where under RTN the sum can no longer grow.

SR solves this issue by jumping in the “wrong” direction.
Conclusions

- SR produces mean independent, mean zero rounding errors.

- SR provides backward error bounds that are proportional to \sqrt{nu}.

- SR can prove much more accurate than RTN in certain scenarios.
M. P. Connolly, N. J. Higham and T. Mary,
Stochastic rounding and its probabilistic backward error analysis,

N. J. Higham and T. Mary,
A new approach to probabilistic rounding error analysis,

N. J. Higham and S. Pranesh,
Simulating low-precision floating-point arithmetic,